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BOUNDARY AMENABILITY OF Out.FN /

by Mladen BESTVINA, Vincent GUIRARDEL YYY
and Camille HORBEZ

Kaum nennt man die Dinge beim richtigen Namen,
so verlieren sie ihren gefährlichen Zauber.

Elias Canetti

What’s in a name? That which we call a rose
By any other name would smell as sweet.

William Shakespeare

Mal nommer un objet,
c’est ajouter au malheur de ce monde.

Albert Camus

Abstract. – We prove that Out.FN / is boundary amenable. This also holds more generally
for Out.G/, where G is either a toral relatively hyperbolic group or a finitely generated right-angled
Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.

Résumé. – Nous montrons que Out.FN / est moyennable à l’infini. Plus généralement, si G est
un groupe relativement hyperbolique torique ou un groupe d’Artin à angles droits de type fini, alors
Out.G/ est moyennable à l’infini. En conséquence, dans chacun de ces cas, le groupe Out.G/ satisfait
la conjecture de Novikov.

1. Introduction

Boundary amenability—also known as exactness or coarse amenability, and also equiv-
alent to Yu’s Property A from [55] (as was shown by Higson and Roe in [27])—is a prop-
erty of a countable group that has important applications in K-theory, operator algebras and
measured group theory. The reader is referred to [2, 47] for general introductions. The defi-
nition is as follows.
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Definition 1.1 (Boundary amenability). – A countable discrete group � is boundary
amenable if there exist a nonempty compact Hausdorff space X equipped with an action of �
by homeomorphisms and a sequence of continuous maps

�n W X ! Prob.�/

such that for all 
 2 �, one has

sup
x2X

jj�n.
:x/ � 
:�n.x/jj1 ! 0;

as n goes toC1.

In this definition, Prob.�/ denotes the space of probability measures on �, equipped with
the topology of pointwise convergence, or equivalently, subspace topology from `1.�/-–the
continuity of the maps�n in the above definition is understood with respect to this topology.
An action � ↷ X as in Definition 1.1 is called topologically amenable.

Boundary amenability has already been established for several important classes of
groups. Guentner, Higson and Weinberger proved in [17] that all linear groups are boundary
amenable. Campbell and Niblo proved in [9] that every group acting properly and cocom-
pactly on a finite-dimensional CAT(0) cube complex is boundary amenable. Boundary
amenability is also known for many groups satisfying ‘hyperbolic-like’ properties: this was
established by Adams [1] for hyperbolic groups and extended by Ozawa [48] to the case
of relatively hyperbolic groups with boundary amenable parabolic subgroups. It was then
established for mapping class groups of orientable surfaces of finite type by Kida [34] and
Hamenstädt [25], and for automorphism groups of locally finite buildings by Lécureux
[37]. On another note, finitely generated groups whose Cayley graphs contain a properly
embedded expander are not boundary amenable; examples of such groups were constructed
by Gromov [16] (see also [4]), and more recently Osajda constructed residually finite exam-
ples [45]. We also mention that work of Arzhantseva, Guentner and Spakula [5] provides
examples of non-coarsely amenable metric spaces of different nature.

The goal of the present paper is to establish the boundary amenability of Out.FN /, the
outer automorphism group of a finitely generated free group FN . This group has been the
subject of intensive research for a while, see e.g., [54] for a recent survey. More generally, we
prove the following theorem.

Theorem 1.2 (see Corollaries 5.5 and 5.7). – Let a finitely generated group G be either

1. a free group,

2. a torsion-free Gromov hyperbolic group,

3. a torsion-free toral relatively hyperbolic group,

4. a right-angled Artin group.

Then Out.G/ is boundary amenable.

Since Aut.G/ embeds in Out.G � Z/ and boundary amenability is stable under taking
subgroups, boundary amenability of Aut.G/ follows in these cases:

Corollary 1.3. – Let G be a group as in Theorem 1.2. Then Aut.G/ is boundary
amenable.
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We expect that the torsion-freeness assumption in Theorem 1.2 is not necessary. But ifG is
a virtually torsion-free hyperbolic group, one can deduce from Theorem 1.2 that Out.G/ and
Aut.G/ are boundary amenable, see Corollary 5.6 (whether or not there exists a hyperbolic
group which is not virtually torsion-free is a famous open question).

When G D FN , an explicit compact space equipped with a topologically amenable
action of Out.FN / is constructed in Section 6.1 of the present paper: this space is an infinite-
dimensional product space involving all boundaries of relative Outer spaces associated to
free factors A � FN and free factor systems of A, and all boundaries of free factors
of FN . But our general proof strategy does not consist in working directly with this compact
space; instead we rely on an inductive argument coming from Ozawa’s work on boundary
amenability of relatively hyperbolic groups [48], as will be explained later in this introduction.

Notice that every identification between the fundamental group of a surface † obtained
from a closed connected surface by removing a finite non-empty set of points, and a finitely
generated free groupFN , yields an embedding of the mapping class group of† into Out.FN /.
Since boundary amenability passes to subgroups, this gives a new proof of the boundary
amenability of the mapping class group of every punctured surface † as above.

Applications. – A key motivation behind the study of boundary amenability comes from
a theorem that follows from work of Yu [55], Higson-Roe [27] and Higson [26], stating
that boundary amenability of � implies the injectivity of the Baum-Connes assembly map,
which in turn implies the Novikov conjecture on higher signatures for � (this theorem builds
on the fact that boundary amenability of � is equivalent to � satisfying Yu’s property A,
which implies in turn that � admits a coarse embedding in a Hilbert space). Since boundary
amenability passes to subgroups [47], we get the following corollary to Theorem 1.2.

Corollary 1.4. – Let G be a group as in Theorem 1.2. Then Out.G/ and any of its
subgroups satisfy the Novikov conjecture.

Another application of the boundary amenability of a group � comes from the study of
certain operator algebras associated to �: for example, boundary amenability of a countable
group is equivalent to the exactness of its reduced C �-algebra, see [2, 46].

Boundary amenability of the automorphism group of a free product. – In order to establish
Theorem 1.2, we actually work in the more general setting of groups coming with a decompo-
sition as a free product. Let k;N be non-negative integers, let fG1; : : : ; Gkg be a finite family
of countable groups, and let

G WD G1 � � � � �Gk � FN :

We let F D fG1; : : : ; Gkg, naturally viewed as a family of subgroups of G. We denote
by Out.G;F/ the subgroup of Out.G/ made of all automorphisms which preserve the
conjugacy class of each subgroup Gi , and by Out.G;F .t// the subgroup made of all auto-
morphisms that act as the conjugation by an element gi 2 G on each subgroup Gi . Our
main theorem is the following:

Theorem 1.5 (see Theorem 5.2). – Let k;N be non-negative integers.
Let F D fG1; : : : ; Gkg be a finite family of countable groups, and let

G WD G1 � � � � �Gk � FN :
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