quatrième série - tome 55

fascicule 5

septembre-octobre 2022

ANNALES SCIENTIFIQUES de L'ÉCOLE NORMALE SUPÉRIEURE

Mladen BESTVINA & Vincent GUIRARDEL & Camille HORBEZ Boundary amenability of $Out(F_N)$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Annales Scientifiques de l'École Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Yves de Cornulier

Publication fondée en 1864 par Louis Pasteur	Comité de rédaction	au 1 ^{er} octobre 2021
Continuée de 1872 à 1882 par H. SAINTE-CLAIRE DEVILLE	S. CANTAT	G. GIACOMIN
de 1883 à 1888 par H. DEBRAY	G. CARRON	D. Häfner
de 1889 à 1900 par C. HERMITE	Y. Cornulier	D. Harari
de 1901 à 1917 par G. DARBOUX	F. Déglise	C. Imbert
de 1918 à 1941 par É. PICARD	A. DUCROS	S. Morel
de 1942 à 1967 par P. Montel	B. FAYAD	P. Shan

Rédaction / Editor

Annales Scientifiques de l'École Normale Supérieure, 45, rue d'Ulm, 75230 Paris Cedex 05, France. Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80. Email : annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France Case 916 - Luminy 13288 Marseille Cedex 09 Tél. : (33) 04 91 26 74 64. Fax : (33) 04 91 41 17 51 Email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 441 euros. Abonnement avec supplément papier : Europe : 619 €. Hors Europe : 698 € (\$ 985). Vente au numéro : 77 €.

© 2022 Société Mathématique de France, Paris

En application de la loi du l^{er} juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l'autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris). *All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.*

BOUNDARY AMENABILITY OF $Out(F_N)$

BY MLADEN BESTVINA, VINCENT GUIRARDEL YYY AND CAMILLE HORBEZ

Kaum nennt man die Dinge beim richtigen Namen, so verlieren sie ihren gefährlichen Zauber. Elias Canetti

> What's in a name? That which we call a rose By any other name would smell as sweet. William Shakespeare

> > Mal nommer un objet, c'est ajouter au malheur de ce monde. Albert Camus

ABSTRACT. – We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for Out(G), where G is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.

RÉSUMÉ. – Nous montrons que $Out(F_N)$ est moyennable à l'infini. Plus généralement, si G est un groupe relativement hyperbolique torique ou un groupe d'Artin à angles droits de type fini, alors Out(G) est moyennable à l'infini. En conséquence, dans chacun de ces cas, le groupe Out(G) satisfait la conjecture de Novikov.

1. Introduction

Boundary amenability—also known as *exactness* or *coarse amenability*, and also equivalent to Yu's *Property A* from [55] (as was shown by Higson and Roe in [27])—is a property of a countable group that has important applications in K-theory, operator algebras and measured group theory. The reader is referred to [2, 47] for general introductions. The definition is as follows.

DEFINITION 1.1 (Boundary amenability). – A countable discrete group Γ is boundary amenable if there exist a nonempty compact Hausdorff space X equipped with an action of Γ by homeomorphisms and a sequence of continuous maps

$$\mu_n: X \to \operatorname{Prob}(\Gamma)$$

such that for all $\gamma \in \Gamma$, one has

$$\sup_{x \in X} ||\mu_n(\gamma x) - \gamma \mu_n(x)||_1 \to 0,$$

as n goes to $+\infty$.

In this definition, $\operatorname{Prob}(\Gamma)$ denotes the space of probability measures on Γ , equipped with the topology of pointwise convergence, or equivalently, subspace topology from $\ell^1(\Gamma)$ —the continuity of the maps μ_n in the above definition is understood with respect to this topology. An action $\Gamma \curvearrowright X$ as in Definition 1.1 is called *topologically amenable*.

Boundary amenability has already been established for several important classes of groups. Guentner, Higson and Weinberger proved in [17] that all linear groups are boundary amenable. Campbell and Niblo proved in [9] that every group acting properly and cocompactly on a finite-dimensional CAT(0) cube complex is boundary amenable. Boundary amenability is also known for many groups satisfying 'hyperbolic-like' properties: this was established by Adams [1] for hyperbolic groups and extended by Ozawa [48] to the case of relatively hyperbolic groups with boundary amenable parabolic subgroups. It was then established for mapping class groups of orientable surfaces of finite type by Kida [34] and Hamenstädt [25], and for automorphism groups of locally finite buildings by Lécureux [37]. On another note, finitely generated groups whose Cayley graphs contain a properly embedded expander are not boundary amenable; examples of such groups were constructed by Gromov [16] (see also [4]), and more recently Osajda constructed residually finite examples [45]. We also mention that work of Arzhantseva, Guentner and Spakula [5] provides examples of non-coarsely amenable metric spaces of different nature.

The goal of the present paper is to establish the boundary amenability of $Out(F_N)$, the outer automorphism group of a finitely generated free group F_N . This group has been the subject of intensive research for a while, see e.g., [54] for a recent survey. More generally, we prove the following theorem.

THEOREM 1.2 (see Corollaries 5.5 and 5.7). – Let a finitely generated group G be either

- 1. a free group,
- 2. a torsion-free Gromov hyperbolic group,
- 3. a torsion-free toral relatively hyperbolic group,
- 4. a right-angled Artin group.

Then Out(G) is boundary amenable.

Since Aut(G) embeds in $Out(G * \mathbb{Z})$ and boundary amenability is stable under taking subgroups, boundary amenability of Aut(G) follows in these cases:

COROLLARY 1.3. – Let G be a group as in Theorem 1.2. Then Aut(G) is boundary amenable.

4° SÉRIE – TOME 55 – 2022 – Nº 5

We expect that the torsion-freeness assumption in Theorem 1.2 is not necessary. But if G is a virtually torsion-free hyperbolic group, one can deduce from Theorem 1.2 that Out(G) and Aut(G) are boundary amenable, see Corollary 5.6 (whether or not there exists a hyperbolic group which is not virtually torsion-free is a famous open question).

When $G = F_N$, an explicit compact space equipped with a topologically amenable action of $Out(F_N)$ is constructed in Section 6.1 of the present paper: this space is an infinitedimensional product space involving all boundaries of relative Outer spaces associated to free factors $A \subseteq F_N$ and free factor systems of A, and all boundaries of free factors of F_N . But our general proof strategy does not consist in working directly with this compact space; instead we rely on an inductive argument coming from Ozawa's work on boundary amenability of relatively hyperbolic groups [48], as will be explained later in this introduction.

Notice that every identification between the fundamental group of a surface Σ obtained from a closed connected surface by removing a finite non-empty set of points, and a finitely generated free group F_N , yields an embedding of the mapping class group of Σ into $Out(F_N)$. Since boundary amenability passes to subgroups, this gives a new proof of the boundary amenability of the mapping class group of every punctured surface Σ as above.

Applications. – A key motivation behind the study of boundary amenability comes from a theorem that follows from work of Yu [55], Higson-Roe [27] and Higson [26], stating that boundary amenability of Γ implies the injectivity of the Baum-Connes assembly map, which in turn implies the Novikov conjecture on higher signatures for Γ (this theorem builds on the fact that boundary amenability of Γ is equivalent to Γ satisfying Yu's property A, which implies in turn that Γ admits a coarse embedding in a Hilbert space). Since boundary amenability passes to subgroups [47], we get the following corollary to Theorem 1.2.

COROLLARY 1.4. – Let G be a group as in Theorem 1.2. Then Out(G) and any of its subgroups satisfy the Novikov conjecture.

Another application of the boundary amenability of a group Γ comes from the study of certain operator algebras associated to Γ : for example, boundary amenability of a countable group is equivalent to the exactness of its reduced C^* -algebra, see [2, 46].

Boundary amenability of the automorphism group of a free product. – In order to establish Theorem 1.2, we actually work in the more general setting of groups coming with a decomposition as a free product. Let k, N be non-negative integers, let $\{G_1, \ldots, G_k\}$ be a finite family of countable groups, and let

$$G := G_1 * \cdots * G_k * F_N$$

We let $\mathcal{F} = \{G_1, \ldots, G_k\}$, naturally viewed as a family of subgroups of G. We denote by $Out(G, \mathcal{F})$ the subgroup of Out(G) made of all automorphisms which preserve the conjugacy class of each subgroup G_i , and by $Out(G, \mathcal{F}^{(t)})$ the subgroup made of all automorphisms that act as the conjugation by an element $g_i \in G$ on each subgroup G_i . Our main theorem is the following:

THEOREM 1.5 (see Theorem 5.2). – Let k, N be non-negative integers. Let $\mathcal{F} = \{G_1, \dots, G_k\}$ be a finite family of countable groups, and let

$$G := G_1 * \cdots * G_k * F_N$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE