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Mathématiques de Paris 2008.





COMPACT QUANTUM GROUPS AND THEIR
REPRESENTATION CATEGORIES

Sergey Neshveyev

Lars Tuset



Comité de rédaction

Antoine CHAMBERT-LOIR
Julie DÉSERTI

Bertrand MAURY

Grégory MIERMONT (Directeur)

Diffusion

Maison de la SMF Hindustan Book Agency AMS EDP Sciences
Case 916 - Luminy O-131, The Shopping Mall P.O. Box 6248 17, avenue du Hoggar

13288 Marseille Cedex 9 Arjun Marg, DLF Phase 1 Providence RI 02940 91944 les Ulis Cedex A
France Gurgaon 122002, Haryana USA France

smf@smf.univ-mrs.fr Inde www.ams.org www.epdsciences.com

Tarifs

Vente au numéro : 50 e ($ 75)
Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat : Nathalie Christiaën
Cours Spécialisés

Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie

75231 Paris Cedex 05, France
Tél : (33) 01 44 27 67 99 � Fax : (33) 01 40 46 90 96
revues@smf.ens.fr � http://smf.emath.fr/

© Société Mathématique de France 2013

Tous droits réservés (article L 122–4 du Code de la propriété intellectuelle). Toute représentation ou
reproduction intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représentation
ou reproduction par quelque procédé que ce soit constituerait une contrefaçon sanctionnée par les articles
L 335–2 et suivants du CPI.

ISSN 1284-6090

ISBN 978-2-85629-777-3

Directeur de la publication : Marc PEIGNÉ

http://smf.emath.fr/
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PREFACE

The term ‘quantum group’ was popularized in the 1980s and, in fact, does not have a
precise meaning. The closely related, and rigorously defined, notion of a Hopf algebra
appeared much earlier, in the 1950s. It has its origin in a work by Hopf [41] from 1941
on algebraic topology, who observed that the cohomology ring of a compact group G
has a homomorphism H�(G)! H�(G)
H�(G). A related, and even more elementary,
example of such structure is the following: for a finite group G and the algebra C(G) of
functions on G with pointwise multiplication we can define a homomorphism, called
comultiplication,

�: C(G)! C(G)
 C(G) = C(G� G) by �(f)(g; h) = f(gh):

What is important, is that the pair (C(G);�) contains complete information about the
group G: the spectrum of the algebra C(G) is G, and the comultiplication � allows us
to recover the group law. We refer the reader to [1] for a thorough discussion of the
origins of the theory of Hopf algebras. The part of the story that is particularly rele-
vant for us starts in the early 1960s with a work by Kac [47]. His idea was to develop a
duality theory that generalizes Pontryagin duality for abelian locally compact groups.
Such a generalization for compact groups had already been obtained by Tannaka [77]
and Krein [54], but even in that case it was not entirely satisfactory in the sense that
the dual of a compact group G was an object of a quite different nature, the category
of finite dimensional representations of G concretely realized as a category of vector
spaces. Kac’s idea was to describe both a locally compact group and its dual using von
Neumann algebras with comultiplication satisfying certain properties, and this way ob-
tain a self-dual category. Such a theory, nowadays called the theory of Kac algebras, was
finally developed in the 1970s by Kac-Vainerman and Enock-Schwartz, see [29].

Being a significant technical achievement, the theory of Kac algebras nevertheless
suffered from the lack of interesting examples that were not of group origin, that is,
were neither algebras of functions nor their duals, group algebras. For similar reasons
the general theory of Hopf algebras remained at that time a small branch of algebra.
The situation changed drastically in the middle 1980s, when Jimbo [44] and Drin-
feld [26] introduced new Hopf algebras by deforming universal enveloping algebras
of semisimple Lie groups. Working in the formal deformation setting Drinfeld also
introduced their dual objects, deformations of the Hopf algebras of regular functions
on semisimple Lie groups. He suggested the term ‘quantum groups’ for Hopf algebras
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related to these constructions. In the analytic, non-formal, setting the quantized alge-
bra of functions on SU(2) was then studied in detail by Vaksman and Soibelman [82].
Simultaneously, and independently of Drinfeld-Vaksman-Soibelman, a deformation
of the algebra of continuous functions on SU(2) was defined by Woronowicz [95].
Remarkably, he arrived at exactly the same definition.

Following the foundational works by Drinfeld, Jimbo, Soibelman, Vaksman and
Woronowicz, the theory of quantum groups saw several years of explosive growth,
apparently unprecedented in the history of mathematics, with ground-breaking ap-
plications to knot theory, topology of 3-manifolds and conformal field theory [80].
This was entwined with the development of noncommutative geometry by Connes,
the free probability theory by Voiculescu and the Jones theory of subfactors. Since
then quantum group theory has developed in several directions and by now there is
probably no single expert who has a firm grasp of all of its aspects.

In this book we take the analytic point of view, meaning that we work with algebras
of, preferably bounded, operators on Hilbert spaces. For an introduction to quantum
groups from the purely algebraic side see e.g., [18]. According to the standard mantra
of noncommutative geometry, an algebra of operators should be thought of as an al-
gebra of functions on a noncommutative locally compact space, with C� -algebras play-
ing the role of continuous functions and von Neumann algebras playing the role of
measurable functions. From this perspective a quantum group is a C� -/von Neumann
algebra with some additional structure making the noncommutative space a group-
like object. Kac algebras give an example of such structure, but as it turned out their
class is too narrow to accommodate the objects arising from Drinfeld-Jimbo deforma-
tions. A sufficiently broad theory was developed first in the compact case by Woronow-
icz [97], and then in the general, significantly more complicated, locally compact case
by Kustermans-Vaes [55] and Masuda-Nakagami-Woronowicz [63]. No theory is com-
plete without interesting examples, and here there are plenty of them. In addition to
examples arising from Drinfeld-Jimbo deformations, there is a large class of quantum
groups defined as symmetries of noncommutative spaces. This line of research was ini-
tiated by Wang [89, 90] and has been extensively pursued by Banica and his collabora-
tors, see e.g., [8, 9]. A related idea is to define quantum isometries of noncommutative
Riemannian manifolds, recently suggested by Goswami and Bhowmick [37, 12].

The goal of this short book is to introduce the reader to this beautiful area of math-
ematics, concentrating on the technically easier compact case and emphasizing the
role of the categorical point of view in constructing and analyzing concrete examples.
Specifically, the first two chapters, occupying approximately 2=3 of the book, contain
a general theory of compact quantum groups together with some of the most famous
examples. Having mastered the material in these chapters, the reader will hopefully
be well prepared for a more thorough study of any of the topics we mentioned above.
The next two chapters are motivated by our own interests in noncommutative geome-
try of quantum groups and concentrate on certain aspects of the structure of Drinfeld-
Jimbo deformations. The general theme of these chapters is the Drinfeld-Kohno the-
orem, which is one of the most famous results in the whole theory of quantum groups,
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presented from the analytic point of view together with its operator algebraic ramifi-
cations. Each section is supplied with a list of references. We try to give references to
original papers, where the results of a particular section and/or some related results
have appeared. The literature on quantum groups is vast, so some omissions are un-
avoidable, and the references are meant to be pointers to the literature rather than
exhaustive bibliographies on a particular subject.

We tried to make the exposition reasonably self-contained, but certain prerequisites
are of course assumed. The book is first of all intended for students specializing in
operator algebras, so we assume that the reader has at least taken a basic course in
C� -algebras as e.g., covered in Murphy [65]. The reader should also have a minimal
knowledge of semisimple Lie groups, see e.g., Part II in Bump [17], without which it
is difficult to fully understand Drinfeld-Jimbo deformations. Finally, it is beneficial to
have some acquaintance with category theory. Although we give all the necessary defi-
nitions in the text (apart from the most basic ones, for those see e.g., the first chapter
in Mac Lane [61]), the reader who sees them for the first time will have to work harder
to follow the arguments.

Let us say a few words about notation.
We denote by the same symbol 
 all kinds of tensor products, the exact meaning

should be clear from the context: for spaces with no topology this denotes the usual
tensor product over C, for Hilbert spaces - the tensor product of Hilbert spaces (that
is, the completion of the algebraic tensor product with respect to the obvious scalar
product), for C� -algebras - the minimal tensor product.

For vector spaces H1 and H2 with no topology we denote by B(H1; H2) the space
of linear operators H1 ! H2 . If H1 and H2 are Hilbert spaces, then the same sym-
bol B(H1; H2) denotes the space of bounded linear operators. We write B(H) instead
of B(H;H).

If A is a vector space with no topology, then A� denotes the space of all linear func-
tionals on A . For topological vector spaces the same symbol denotes the space of all
continuous linear functionals.

The symbol � denotes the identity map.
In order to simplify long complicated expressions, we omit the symbol � for the com-

position of maps, as well as use brackets only for arguments, but not for maps. Thus we
write ST (x) instead of (S � T )(x).

This book grew out of a 10-lecture course taught by the first author at the Institut
Henri Poincaré in the spring 2009. We are grateful to the Fondation Sciences Math-
ématiques de Paris for the assistance in typing the notes for the course. The subse-
quent work on the book was supported by the Research Council of Norway and the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement no. 307663. It is our pleasure to
thank our colleagues Jyotishman Bhowmick for reading parts of the manuscript and
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