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Ce livre propose une introduction aux groupes quantiques, aux catégories monöıdales
tressées et aux invariants quantiques de nœuds et de variétés de dimension trois. Nous mettons
l’accent sur les relations profondes qui existent entre ces domaines et qui ont été découvertes
au cours de la dernière décennie.

Dieses Buch bietet eine Einleitung in die Quantengruppen, die verzopften monoidalen Kate-
gorien und die Quanteninvarianten von Knoten und von dreidimensionalen Mannigfaltigkeiten.
Die tiefliegenden Beziehungen, die neuerdings zwischen diesen Bereichen entdeckt wurden, wer-
den hier unterstrichen.

This book provides a concise introduction to quantum groups, braided monoidal categories,
and quantum invariants of knots and of three-dimensional manifolds. The exposition emphasizes
the newly discovered deep relationships between these areas.

V knige daets� s�atoe vvedenie v teori� kvantovyh grupp, kosovyh kate-
goriĭ i kvantovyh invariantov uzlov i trehmernyh mnogoobraziĭ. Osoboe
vnimanie udel�ets� nedavno otkrytym glubokim vzaimosv�z�m me�du �timi
oblast�mi.
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4.3. A Poincaré-Birkhoff-Witt-Type Basis in U+ 39
4.4. Specializations and the Universal R-Matrix 42



vi CONTENTS

5. THE JONES POLYNOMIAL AND SKEIN CATEGORIES 45

5.1. Knots, Links, and Link Diagrams 45
5.2. The Jones Polynomial of Links 48
5.3. Skein Modules of Tangles 52
5.4. Categories of Tangles 55

6. FROM RIBBON CATEGORIES TO TOPOLOGICAL
INVARIANTS OF LINKS AND 3-MANIFOLDS 59

6.1. Ribbon Categories 59
6.2. The Functor F 62
6.3. Modular Categories 65
6.4. Invariants of 3-Manifolds 67

7. THE REPRESENTATION THEORY OF Uq sl(N + 1) 71

7.1. Highest Weight Modules 71
7.2. Quantum Theory of Invariants 74
7.3. The Case of Roots of Unity 76
7.4. Quantum Groups with a Formal Parameter 79

8. VASSILIEV INVARIANTS OF LINKS 81

8.1. Definition and Examples 81
8.2. Chord Diagrams and Kontsevich’s Theorem 84
8.3. The Pro-Unipotent Completion of a Braided Category 85
8.4. Another description of T̂0(R) 87

9. ADVANCED TOPICS 91

9.1. Infinitesimal Symmetric Categories 91
9.2. Quantization of an Infinitesimal Symmetric Category 95
9.3. The Kontsevich Universal Invariant 100
9.4. An Action of Gal(Q/Q) 102

GUIDE TO THE LITERATURE 105

INDEX 113

PANORAMAS ET SYNTHÈSES 5



INTRODUCTION

In this book we survey recent spectacular developments in the theory of Lie
algebras and low-dimensional topology. These developments center around quantum
groups and braided categories on the algebraic side and new invariants of knots, links,
and three-manifolds on the topological side. This new theory has been, to a great
extent, inspired by ideas that arose in theoretical physics. This strongly emphasizes a
remarkable unity between the theory of Lie algebras, low-dimensional topology, and
mathematical physics.

Quantum groups were introduced around 1983–1985 by V. Drinfeld and M. Jimbo.
They may be roughly described as one-parameter deformations of the enveloping
algebras of semisimple Lie algebras. Quantum groups appeared as an algebraic for-
mulation of the work of physicists, especially from the Leningrad school of L. Faddeev,
on the Yang-Baxter equation. An important feature of quantum groups is that the
category of their representations has a so-called braiding. The notion of a braided
monoidal category, formulated by A. Joyal and R. Street, plays a fundamental rôle in
this theory.

An independent breakthrough was made in knot theory in 1984 by V. Jones. He
used von Neumann algebras to define a new polynomial invariant of links. The study
of the Jones polynomial rapidly involved ideas of statistical mechanics including the
Yang-Baxter equation. It was observed by N. Reshetikhin and V. Turaev that the
braided categories derived from quantum groups were the right algebraic objects
needed to define representations of the braid groups and link invariants. This leads to
a vast set of polynomial invariants of links whose components are coloured with finite-
dimensional representations of a complex semisimple Lie algebra. This generalizes the
Jones polynomial, which arises when all components of a link are coloured with the
fundamental two-dimensional representation of sl2(C).

Further study proceeded in several different, albeit related, directions. In 1988
E.Witten invented the notion of a topological quantum field theory and outlined
a fascinating picture of such a theory in three dimensions. This picture includes a
path integral definition of numerical invariants of three-manifolds and links in three-
manifolds generalizing the values of the Jones polynomial at the roots of unity. A
rigourous mathematical definition of such three-manifold invariants was given by
N. Reshetikhin and V. Turaev in 1988 on the basis of the theory of quantum groups
at roots of unity.



2 INTRODUCTION

At about the same time (1989-90), in the quite different context of singularity
theory, V. Vassiliev introduced the notion of a knot invariant of finite degree. The
invariants of degree 0, 1, 2, . . . form an increasing filtration on the vector space of
all knot invariants. The associated graded vector space can be described in terms of
chord diagrams which may be viewed as a mathematical version of Feynman diagrams.
In 1992 M. Kontsevich constructed a universal Vassiliev-type invariant of knots with
values in the algebra of chord diagrams. This invariant dominates all finite degree
invariants. The polynomial invariants of knots derived from quantum groups can
also be computed from the Kontsevich invariant. Indeed, these polynomials may be
expanded as formal series whose coefficients are invariants of finite degree.

This survey is intended to introduce the reader in the world of quantum groups,
braided categories, knots, three-manifolds, and their invariants. We have not tried
to give a complete picture of the theory, but rather to highlight its main features.
Unfortunately, we had to leave out of the scope of this book a number of important
aspects of the theory, including Woronowicz’s approach to quantum groups in the
framework of operator algebras, the dual construction by Faddeev, Reshetikhin, and
Takhtadjian, the connections with state sum models of statistical mechanics, the
quantization of Poisson structures and the theory of Poisson-Lie groups.

The book is organized as follows. We start in Chapter I with the Yang-Baxter
equation. We show how solutions of this equation lead to representations of the braid
groups. In Chapter II we introduce the concept of a braided bialgebra and show that
the category of representations of such a bialgebra is a braided monoidal category.
Examples of braided bialgebras are provided by the quantum groups defined and
studied in Chapters III and IV.

In Chapter III we present Drinfeld’s quantum double construction, which is a
general method to produce braided bialgebras. Quantum groups appear in Chapter IV
with the quantization Uqsl(N + 1) of the Lie algebra sl(N + 1). We give an overview
of their main properties.

In Chapter V we enter the world of low-dimensional topology. We start with a
definition of the Jones polynomial using the Kauffman bracket. We show that the
study of knots, links, and more general objects called tangles naturally leads to braided
monoidal categories. This yields geometric constructions of such categories.

In Chapter VI we introduce an important class of braided monoidal categories,
namely the ribbon categories. Monoidal categories derived from the representations
of quantum groups or from tangles are ribbon categories. We explain how to construct
isotopy invariants of knots, links, and tangles, whose components are coloured with
objects of a ribbon category. Then we introduce the more restricted class of modular
categories and show how to derive from each modular category the corresponding
Reshetikhin-Turaev invariant of three-manifolds and links in three-manifolds.

In Chapter VII we survey the representation theory of Uqsl(N + 1) and show that
it leads to ribbon and modular categories, hence to the construction of “quantum
invariants” of links and three-manifolds.

Chapter VIII is devoted to the theory of Vassiliev invariants of links. Examples of
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Vassiliev invariants are provided by the quantum invariants of the previous chapter.
We formulate an important theorem due to Kontsevich.

In Chapter IX we present more advanced topics based on work of Drinfeld. In
particular, we give a construction of Kontsevich’s universal link invariant and show
how to recover the quantum invariants from it. In the very last section we explain
how the Galois group Gal(Q/Q) acts on the space of Vassiliev invariants.

We close with a guide to the literature for the reader wishing to get more
information on the subject.

This book grew out of notes we wrote for the “Journées Quantiques” that took
place at the Department of Mathematics of the Université Louis Pasteur in Strasbourg
on April 2–4, 1993. This was the first of a series of semi-annual meetings “État de la
Recherche” initiated by the Société Mathématique de France (SMF) and sponsored
by the SMF, the Ministère de la Recherche et de la Technologie, the Ministère de
l’Éducation Nationale (DRED), and the Institut de RechercheMathématique Avancée
(Strasbourg).
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Chapter 1

THE YANG-BAXTER EQUATION AND
BRAID GROUP REPRESENTATIONS

In this chapter we introduce the Yang-Baxter equation and show how any solution of
this equation gives rise to representations of the braid groups.

1. The Yang-Baxter Equation

1.1. R-matrices. —Consider a vector space V over a field k. The Yang-Baxter equation
is the following equation for a linear automorphism c of V ⊗ V :

(1.1) (c⊗ idV )(idV ⊗c)(c⊗ idV ) = (idV ⊗c)(c⊗ idV )(idV ⊗c).

Equation (1.1) holds in the automorphism group of V ⊗ V ⊗ V . A solution is called
an R-matrix. Let (vi)i be a basis of the vector space V . An automorphism c of V ⊗V
is defined by the family (ck�ij )i,j,k,� of scalars determined by

c(vi ⊗ vj) =
∑
k,�

ck�ij vk ⊗ v�.

Then c is a solution of the Yang-Baxter equation if and only if, for all i, j, k, �,m, n,

(1.2)
∑
p,q,y

cpqij c
yn
qk c

�m
py =

∑
y,q,r

cqrjkc
�y
iq c

mn
yr .

Solving the non-linear equations (1.2) is a highly non-trivial problem. Nevertheless,
numerous solutions of the Yang-Baxter equation have been discovered in the 1980’s.
Let us list a few simple ones.

1.2. Example. —For any vector space V we denote by τV,V ∈ Aut(V ⊗ V ) the flip
switching the two copies of V . It is defined by

τV,V (v1 ⊗ v2) = v2 ⊗ v1 for any v1, v2 ∈ V .
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The flip satisfies the Yang-Baxter equation because of the Coxeter relation

(12)(23)(12) = (23)(12)(23)

holding in the symmetric group S3, where (ij) denotes the transposition exchanging
i and j.

1.3. Example. —Let V be a finite-dimensional vector space with a basis (e1, . . . , eN ).
For any invertible scalar q, we define an automorphism c of V ⊗ V by

(1.3) c(ei ⊗ ej) =



q ei ⊗ ei if i = j,
ej ⊗ ei if i < j,
ej ⊗ ei + (q − q−1) ei ⊗ ej if i > j.

1.4. Proposition. —The automorphism c is a solution of the Yang-Baxter equation.
Moreover, we have

(c− q idV⊗V )(c+ q−1 idV⊗V ) = 0.

We leave the proof as an exercise.

Observe that Example 1.3 is a one-parameter-deformation of the automorphism
τV,V of Example 1.2. To recover the latter, set q = 1 in (1.3). Note that, when N = 2,
the matrix of the automorphism c in the basis formed by the vectors (v1⊗ v1, v2⊗ v2,
v1 ⊗ v2, v2 ⊗ v1) is

(1.4)



q 0 0 0
0 q 0 0
0 0 0 1
0 0 1 q − q−1


.

1.5. Exercises.

(a) Resume the hypotheses and the notations of Example 1.3, which we generalize
using two invertible scalars p, q and a family {rij}1≤i,j≤N of scalars such that rii = q
and rijrji = p when i �= j. Define an automorphism c of V ⊗ V by

c(ei ⊗ ej) =



qei ⊗ ei if i = j,
rjiej ⊗ ei if i < j,
rjiej ⊗ ei + (q − pq−1)ei ⊗ ej if i > j.

Check that the automorphism c is an R-matrix such that

(c− q idV⊗V )(c+ pq−1 idV⊗V ) = 0.

(b) Consider a matrix of the form

p 0 0 0
0 a b 0
0 c d 0
0 0 0 q


.
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2. ARTIN’S BRAID GROUPS 7

Prove that it is an R-matrix if and only if the following relations hold:

adb = adc = ad(a− d) = 0,
p2a = pa2 + abc, q2a = qa2 + abc,

p2d = pd2 + dbc, q2d = qd2 + dbc.

2. Artin’s Braid Groups

2.1. Definition. —Fix an integer n ≥ 3. We define the braid group with n strands as
the group Bn generated by n− 1 generators σ1 , . . . ,σn−1 and the relations

σiσj = σjσi if |i− j| > 1,(2.1)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i,j ≤ n− 1.(2.2)

When n = 2, we define B2 as the free group on one generator σ1. It is useful to set
B0 = B1 = {1}.

There is a natural surjection of groups from Bn to the symmetric group Sn, that
is the group of all permutations of the set {1, . . . , n}. Indeed, consider the (n − 1)
transpositions

si = (i, i+ 1) (i = 1, . . . , n− 1).

They clearly satisfy Relations (2.1–2.2). It follows that there exists a unique group
morphism π :Bn → Sn such that π(σi) = si for all i. This morphism is surjective
because the transpositions si form a generating set for Sn. Actually, to pass from a
presentation of the group Bn to a presentation of Sn, it suffices to add the relations

σ2i = 1 (i = 1, . . . , n− 1).

One big difference between symmetric groups and braid groups is that the former
are finite groups while the latter are infinite groups when n > 1. Moreover, the
group Bn is torsion-free, that is to say, all elements �= 1 have infinite order.

2.2. From the Yang-Baxter equation to representations of the braid groups. —Let V be
a vector space and c an automorphism of V ⊗ V that is an R-matrix as defined in
Section 1. For 1 ≤ i ≤ n − 1, define a linear automorphism ci of the n-fold tensor
power V ⊗n by

(2.3) ci =



c⊗ idV ⊗(n−2) if i = 1,
idV ⊗(i−1) ⊗ c⊗ idV ⊗(n−i−1) if 1 < i < n− 1,
idV ⊗(n−2) ⊗ c if i = n− 1.

We claim that Relations (2.1–2.2) hold for the automorphisms c1, . . . , cn−1. This is
immediate for (2.1). As for (2.2), observe that it suffices to check that c1c2c1 = c2c1c2
is satisfied in Aut(V ⊗ V ⊗ V ), but this is another way to write the Yang-Baxter
equation.

This proves the following.
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2.3. Proposition. —Let c ∈ Aut(V ⊗ V ) be a solution of the Yang-Baxter equation.
Then, for any n > 0, there exists a unique homomorphism ρcn :Bn → Aut(V ⊗n) such
that ρcn(σi) = ci for i = 1, . . . ,n− 1.

3. Alternative description of Bn

In Section 2 we gave an algebraic definition of the braid group. We now present Artin’s
original geometric definition and explain the term “braid”.

Consider the product Cn of n copies of the complex line. Inside it we define Yn as
the subset of all n-tuples (z1, . . . , zn) of points of C such that zi �= zj when i �= j.
We distinguish a point p = (1, . . . , n) in Yn. The symmetric group Sn acts on Yn by
permutations of the coordinates.

The quotient space Xn = Yn/Sn is the configuration space of n points in C.

3.1. Theorem. —The fundamental group π1(Xn ,p) of the configuration space Xn is
isomorphic to the braid group Bn.

This theorem is due to E. Artin. We shall content ourselves with exhibiting a
homomorphism from Bn to π1(Xn, p). To the generator σi of Bn we assign the
continuous map f = (f1, . . . , fn) : [0, 1]→ Cn defined for s ∈ [0, 1] and all j by

fi(s) = 1
2

(
2i+ 1− exp(

√
−1πs)

)
,

fi+1(s) = 1
2

(
2i+ 1 + exp(

√
−1πs)

)
,

fj(s) = j if j �= i, i+ 1.

It is easy to check that f is a loop at the point p in the configuration space Xn. Let σ̂i
be its class in π1(Xn, p). The elements σ̂1, . . . , σ̂n−1 satisfy Relations (2.1) and (2.2).
Thus, by definition of Bn, there exists a unique homomorphism Bn → π1(Xn, p)
sending σi to σ̂i for all i = 1, . . . , n−1. This homomorphism is in fact an isomorphism.
For details, see [Bir74] or [BZ85].

We now wish to give a more familiar image of the braid group. Let

f = (f1, . . . , fn) : [0, 1] −→ Yn ⊂ Cn

be a continuous map representing an element of π1(Xn, p), hence of Bn. Consider the
subset Lf of C× [0, 1]

Lf =
n⋃
i=1

{
(fi(s), s) | s ∈ [0, 1]

}
.

It is the disjoint union of n intervals continuously embedded in C× [0, 1]. We call it
a braid with n strands. Note that

(i) the boundary of Lf is the set {1, . . . , n} × {0, 1} and
(ii) for all s ∈ [0, 1] the intersection of Lf with C×{s} consists of exactly n points.
Conversely, any disjoint union of n intervals continuously embedded in C × [0, 1]

such that Conditions (i) and (ii) hold is a subset Lf for some loop f of Xn.
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It follows that there is an equivalence relation on braids with n strands such
that Bn ∼= π1(Xn, p) is in bijection with the set of equivalence classes of braids
with n strands. This equivalence is called isotopy. We shall encounter isotopy again
in Section 1 of Chapter 5 when we introduce tangles, which generalize braids as well
as knots.

3.2 Exercise. —Describe the group structure induced by Bn on the set of braids with n
strands.
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