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ON ALGEBRAIC HYPERBOLICITY

by

Erwan Rousseau

Abstract. – We study properties of algebraic nature that are expected to be related
to hyperbolicity. A classical result of Demailly establishes lower bounds for the genus
of curves in hyperbolic manifolds. The inequalities of Demailly are closely related
to geometric Lang-Vojta’s conjectures claiming that curves on logarithmic pairs of
general type should satisfy similar inequalities.

Starting with the classical result of Bogomolov, which proves such inequalities for
surfaces of general type with positive second Segre number, we focus on the alternative
proof of Miyaoka, which makes the inequality effective (since constants can be chosen
to be functions of Chern numbers of the surface).

The proof is presented as an illustration of the theory of orbifolds of Campana:
lower bounds on the genus of curves are obtained as consequences of some general
orbifold Bogomolov-Miyaoka-Yau inequalities.

1. Introduction

Following ideas of Lang, it is generally expected that Kobayashi hyperbolicity,
which is of analytic nature, could be characterized by purely algebraic properties. In
this direction, Demailly [11] made the following observation.

Theorem 1.1. – Let X be a Kobayashi hyperbolic complex projective variety. Then
there exists ϵ > 0 such that every irreducible algebraic curve C ⊂ X satisfies

(1.1.1) −χ( C̃ ) = 2g( C̃ )− 2 ≥ ϵ deg C̃ ,

where C̃ is the normalization of C .

This motivates the following purely algebraic definition.
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Definition 1.2. – Let X be a complex projective variety. X is said to be algebraically
hyperbolic if 1.1.1 holds for all irreducible algebraic curve C ⊂ X.

One of the interests of this definition is that it is related to Lang-Vojta’s conjectures
on function fields. Let us formulate one of these geometric Lang-Vojta’s conjectures
in the setting of logarithmic pairs of general type, making clear the connection with
algebraic hyperbolicity.

Conjecture 1.3. – Let X be a complex projective manifold, D ⊂ X a normal crossing
divisor. If (X, D) is of log-general type then there exists a proper subvariety Z ⊂ X

and real numbers A and B such that

(1.3.1) deg f(C) ≤ A(2g(C)− 2 + |S|) + B,

for all smooth projective curves C, finite morphisms f : C → X and finite subsets
S ⊂ C such that f−1(D) ⊂ S and f(C) ̸⊂ Z.

Complex manifolds satisfying the weaker condition 1.3.1 are said to be weakly
algebraically hyperbolic.

The surface case in Conjecture 1.3 is still open, even when X = P2. Nevertheless,
important results have been obtained towards this geometric Lang-Vojta’s conjecture.

In the case of X = Pn, the conjecture is solved independently by [8] and [21] for very
general normal crossing divisors D ⊂ X of degree deg D ≥ 2n + 1. For n = 2, some
results have been obtained when deg D = 4 using arithmetic methods on function
fields. The four line case follows from an extension of Mason’s ABC theorem [5] and
the three components case can be reduced to a S-unit gcd problem [10].

Several interesting results have also been obtained on quotients of bounded sym-
metric domains (see the interesting paper [1] for a discussion of Conjecture 1.3 in
this context). In [12], Faltings establishes the following boundedness results for fam-
ilies p : X → C \ S of principally polarized abelian varieties of relative dimen-
sion g with level structures n ≥ 3: for all such induced morphisms to the moduli
space ϕ : C → A g,n one has the inequality deg ϕ∗(K + D) ≤ g(3g(C) + |S| + 1),
where K is the canonical divisor of A g,n and D is the compactification divisor which
can be assumed to be normal crossing. This was improved later by Kim [14] ob-
taining the inequality deg ϕ∗(K + D) ≤ g(g+1)

2 (2g(C) − 2 + |S|) which is exactly
Conjecture 1.3 in this setting. Recently, a similar result has been obtained in [22] for
families of abelian varieties with real multiplication, thus establishing Conjecture 1.3
for Hilbert modular varieties.

In dimension 2, for the compact case (i.e., D = 0), the first striking result is
a theorem of Bogomolov [3] proving Conjecture 1.3 for surfaces of general type with
positive second Segre number s2 := c2

1−c2. Recently, in the same setting, Miyaoka [20]
gives an alternative proof of this statement obtaining effective constants as functions
of c2

1 and c2 in the inequality 1.3.1. Moreover, when the curve C ⊂ X is supposed to
be smooth, Miyaoka [20] shows that KX .C ≤ 3

2 (2g − 2) + o(g). These results are not
only striking illustrations of Lang-Vojta’s conjectures but we will try to explain that
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the method of proof is also interesting since it can be translated into an application
of the theory advertised by Campana [6] of the orbifold category.

In Section 2, we review the ideas dating back to Bogomolov [3] showing how the
theory of foliations can be used to derive algebraic hyperbolicity of surfaces with
positive Segre class. In Section 3, we recall the classical Bogomolov-Miyaoka-Yau
inequality and explain how some more recent inequalities of Miyaoka [20] can be
interpreted in the category of orbifold pairs (in the sense of Campana). We also give
some new higher dimensional generalizations of these orbifold inequalities using recent
results of Campana and Păun [7]. Finally in Section 4, we explain how these results
imply the above mentioned results of Miyaoka [20] as well as some results of [2] on
the finiteness of smooth Shimura curves on compact Hilbert modular surfaces.

Acknowledgments. – The author is grateful to the referee for many useful comments
which improved the exposition.

2. The approach via foliations

Following ideas of Bogomolov [3], one obtains a positive answer for some surfaces.

Theorem 2.1. – Let (X, D) be a log-smooth surface of log-general-type such that its
log-Chern classes satisfy c2

1 > c2. Then (X, D) satisfies Conjecture 1.3.

Proof. – Under the hypothesis c2
1 > c2, one obtains that T ∗X(log D) is big. Indeed, by

Riemann-Roch

χ(X,SmT ∗X(log D)) =
m3

6
(c2

1 − c2) + O(m2).

Therefore h0(X, SmT ∗X(log D)) + h2(X, SmT ∗X(log D)) > cm3. Now, by Serre duality
and the isomorphism (KX ⊗D)⊗ TX(− log D) = T ∗X(log D), we have

h2(X,SmT ∗X(log D)) = h0(X, (KX ⊗D)(−m) ⊗KX ⊗ SmT ∗X(log D))

≤ h0(X, SmT ∗X(log D)).

The last inequality comes from the fact that (X,D) is of general type and
in particular, (KX ⊗ D)m ⊗ K−1

X is effective for large m. Finally, we obtain
h0(X,SmT ∗X(log D)) > c

2m3 and T ∗X(log D) is big.
So we have a section ω ∈ H0(X,SmT ∗X(log D)⊗A−1), where A is any line bundle.

The morphism f : C → X induces a morphism f ′ : C → P(TX(− log D)).

Z = (ω = 0) ⊂ P(TX(− log D))

π

��

C
f

//

f ′
55

X.

By definition we have an inclusion f ′∗( O(1)) ↪→ KC(f∗(D)red). So we easily obtain
the algebraic tautological inequality

degC(f ′∗( O(1)) ≤ 2g(C)− 2 + N1(f
∗D).
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If f ′(C) ̸⊂ Z then the previous inequality gives
1

m
deg f∗A ≤ 2g(C)− 2 + N1(f

∗D).

Now, let us suppose that f ′(C) ⊂ Z and that Z is an irreducible horizontal surface.
Then Z is equipped with a tautological holomorphic foliation by curves: if z ∈ Z is
a generic point, a neighborhood U of z induces a foliation on a neighborhood V

of x = π(z). Indeed, a point in U ⊂ P(TX(− log D)) is of the form (w, [t]) where
w is a point in X and t a tangent vector at this point. This foliation lifts through
the isomorphism U → V induced by π. Leaves are just the derivatives of leaves
on V . Tautologically, f ′ : C → Z is a leaf. By a theorem of Jouanolou [13]: either
Z has finitely many algebraic leaves or it is a fibration. In both cases, one obtains
immediately that deg f∗(A) has to be bounded.

Corollary 2.2. – Let X = P2 and D =
∑r

i=1 Ci a normal crossing curve where Ci is a
curve of degree di, d1 ≤ d2 ≤ · · · ≤ dr. Then (P2, D) satisfies Conjecture 1.3 if r ≥ 5

or, r = 4 and d4 ≥ 2; r = 3 and d1 ≥ 2, d3 ≥ 3 or d1 = 1, d2 ≥ 3, d3 ≥ 4; r = 2 and
d1 ≥ 5 or d1 ≥ 4, d2 ≥ 7.

Proof. – Let d :=
∑

di. One has c2
1 − c2 = 6 − 3d +

∑
i<j didj . From Theorem 2.1,

one immediately obtains the result.

3. Orbifold Bogomolov-Miyaoka-Yau inequalities

3.1. The classical Bogomolov-Miyaoka-Yau inequality. – Let us start with the follow-
ing classical statement.

Theorem 3.1 ([18]). – Let (X, D) be a log-smooth surface with reduced boundary. Let
E be a rank 2 reflexive subsheaf of ΩX(log D). If c1( E ) is pseudoeffective, then

(3.1.1) c1( E )2 ≤ 3c2( E ).

We will give a simple proof of this theorem following [15]. First, we need some lem-
mas. Recall that c1( E ) being pseudoeffective, one has a canonical (Zariski) decompo-
sition c1( E ) = P + N where P is a nef Q-divisor (the positive part), N =

∑
ajDj is

an effective Q-divisor (the negative part) such that the Gram matrix (Di · Dj) is
negative definite, and P is orthogonal to N with respect to the intersection form. We
will also need the following theorem of Bogomolov [4].

Theorem 3.2. – Let X be a projective manifold , D a normal crossing divisor on X

and L ⊂ Ωp
X(log D) a coherent subsheaf of rank 1. Then κ(X, L) ≤ p.

We can now state the first lemma we need.

Lemma 3.3. – If h0(X, E (−C)) ̸= 0 and L · (C− 1
2N) > 0 for some nef divisor L then

C · P ≤ c2( E )− 1
4N2.
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Proof. – Consider the exact sequence 0 → O(C) → E → E / O(C) → 0. Then c2( E ) =

c1( O(C)) · c1( E / O(C)) = C · (c1( E )− C) = P · C + 1
4N2 − (C − 1

2N)2. H0(X, C) ↪→
H0(X, ΩX(log D)) so, by Bogomolov’s Theorem 2.1, κ(X, C − 1

2N) ≤ κ(X, C) ≤ 1.

Next, observe that h2(X,m(C − 1
2N) = 0 for m ≫ 0 otherwise by Serre duality one

would obtain L · (C − 1
2N)) ≤ 0. Therefore by Riemann-Roch (C − 1

2N)2 ≤ 0, which
concludes the proof.

We need the following generalization.

Lemma 3.4. – If h0(X,Sn E (−C)) ̸= 0 and L · (C − n
2 N) > 0 for some nef divisor L

then C · P ≤ n(c2( E )− 1
4N2).

Proof. – Let s ∈ H0(X, Sn E (−C)). Let us take a generically finite morphism
f : Y → X such that f∗s = s1 · · · sn where si ∈ H0(X, f∗ E (−Ci)). We note
f∗C =

∑
Ci. Therefore (

∑
Ci − n

2 f∗N)) · f∗L = deg f · (C − n
2 N)).L > 0. By the

preceding lemma, if (Ci − 1
2f∗N) · f∗L > 0 (which has to be verified for at least one

i) or Ci · f∗P = (Ci − 1
2f∗N) · f∗P > 0 then

Ci · f∗P ≤ c2(f
∗ E )− 1

4
(f∗N)2 = deg f(c2( E )− 1

4
N2).

In the possible remaining cases where Ci · f∗P = 0 one has also Ci · f∗P = 0 ≤
c2(f

∗ E )− 1
4 (f∗N)2. To finish, we take the sum of all these inequalities.

We can now prove Theorem 3.1

Proof. – Recall that N2 ≤ 0 by property of the Zariski decomposition. Let us prove
that c1( E )2 ≤ 3c2( E ) + 1

4N2, i.e.,

1

3
P 2 ≤ c2( E )− 1

4
N2.

If h0(X, Sn E (−(n
2 N + naP + H))) ̸= 0 for some ample divisor H and a ≥ 1

3 then

1

3
nP 2 ≤ naP 2 ≤ P · (naP + H) ≤ n(c2( E )− 1

4
N2),

by the above lemma.

So we assume h0(X, Sn E (−(n
2 N + naP + H))) = 0 for all a ≥ 1

3 and all n ≥ 1.

h2(X, Sn E (−(
n

2
N + naP + H))) = h0(X, Sn E (−n

2
N + (na− n)P + H + KX))

≤ h0(X, Sn E (−n

2
N − n(1− a)P −H)) + O(n2).

So for a = 1
3 , we have χ(X, Sn E (−(n

2 N − n
3 P −H))) ≤ O(n2).
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