
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

Panoramas et Synthèses

Numéro 45

The dimer model
in statistical mechanics

Béatrice de Tilière

edited by

C. Boutillier, N. Enriquez



Panoramas & Synthèses
45, 2014, p. 1–45

THE DIMER MODEL IN STATISTICAL MECHANICS

by
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Abstract. – The dimer model is the study of random perfect matchings of a planar
graph, representing the adsorption of diatomic molecules on the surface of a crystal.
It belongs to the field of statistical mechanics. The goal for these lectures is to give an
overview of: the foundational results of Kasteleyn, Temperley and Fisher, proving an
explicit formula for the partition funtion; Thurston’s height function interpretation of
dimer configurations of bipartite graphs; the paper “Dimers and Amoebae” of Kenyon,
Okounkov and Sheffield, giving a full description of the dimer model on infinite, bi-
periodic, bipartite graphs.

Résumé. – Le modèle de dimères consiste en l’étude de couplages parfaits aléatoires
d’un graphe planaire, représentant la répartition de molécules di-atomiques à la sur-
face d’un cristal. Ce modèle appartient au domaine plus large de la mécanique sta-
tistique. Le but de ces notes de cours est de donner un aperçu des résultats suivants :
expression explicite pour la fonction de partition due à Kasteleyn, Temperley et Fi-
sher ; interprétation en tant que fonction de hauteur des configurations de dimères
d’un graphe biparti due à Thurston ; description complète du modèle de dimères sur
un graphe infini, bi-périodique et biparti, due à Kenyon, Okounkov et Sheffield.

1. Introduction

1.1. Statistical mechanics and 2-dimensional models. – Statistical mechanics is the ap-
plication of probability theory, which includes mathematical tools for dealing with
large populations, to the field of mechanics, which is concerned with the motion of

2010 Mathematics Subject Classification. – 82B20.
Key words and phrases. – Dimer model, perfect matchings, partition function, height function, free
energy, Gibbs measure, phase transition, amoeba, Gaussian free field.

These notes were written in part while at Institut de Mathématiques, Université de Neuchâtel, Rue
Emile-Argand 11, CH-2007 Neuchâtel. Supported in part by the Swiss National Foundation grant
200020-120218.

© Panoramas et Synthèses 45, SMF 2014



2 BÉATRICE DE TILIÈRE

particles or objects when subjected to a force. Statistical mechanics provides a frame-
work for relating the microscopic properties of individual atoms and molecules to the
macroscopic bulk properties of materials that can be observed in everyday life (source:
‘Wikipedia’).

In other words, statistical mechanics aims at studying large scale properties of
physics system, based on probabilistic models describing microscopic interactions be-
tween components of the system. Statistical mechanics is also known as statistical
physics.

It is a priori natural to introduce 3-dimensional graphs in order to accurately model
the molecular structure of a material as for example a piece of iron, a porous material
or water. Since the 3-dimensional version of many models turns out to be hardly
tractable, much effort has been put into the study of their 2-dimensional counterpart.
The latter have been shown to exhibit rich, complex and fascinating behaviors. Here
are a few examples.

– Percolation. This model describes the flow of a liquid through a porous material.
The system considered is a square grid representing the molecular structure
of the material. Each bond of the grid is either “open” with probability p, or
“closed” with probability 1−p, and bonds are assumed to behave independently
from each other. The set of open bonds in a given configuration represents the
part of the material wetted by the liquid, and the main issue addressed is the
existence and properties of infinite clusters of open edges. The behavior of the
system depends on the parameter p: when p = 0, all edges are closed, there is
no infinite cluster and the liquid cannot flow through the material; when p = 1,
all edges are open and there is a unique infinite cluster filling the whole grid.
One can show that there is a specific value of the parameter p, known as critical
p, equal to 1/2 for the square grid, below which the probability of having an
infinite cluster of open edges is 0, and above which the probability of it existing
and being unique is 1. One says that the system undergoes a phase transition
at p = 1/2. References [33, 18, 3, 53, 52] are books or lecture notes giving an
overview of percolation theory.

– The Ising model. The system considered is a magnet made of particles restricted
to stay on a grid. Each particle has a spin which points either “up” or “down”
(spin ±1). Each configuration σ of spins on the whole grid has an energy E(σ),
which is the sum of an interaction energy between pairs of neighboring spins, and
of an interaction energy of spins with an external magnetic field. The probability
of a configuration σ is proportional to e−

1
kT E(σ), where k is the Boltzmann

constant, and T is the external temperature. When there is no magnetic field
and the temperature is close to 0, spins tend to align with their neighbors and a
typical configuration consists of all +1 or all −1. When the temperature is very
high, all configurations have the same probability of occurring and a typical
configuration consists of a mixture of +1 and −1. Again, there is a critical
temperature Tc at which the Ising model undergoes a phase transition between
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Figure 1. An infinite cluster of open edges, when p = 1
2
. Courtesy of V. Beffara.

the ordered and disordered phase. The literature on the Ising model is huge, as
an introductory reading we would suggest the book by Baxter [1], the one by
McCoy and Wu [37], the lecture notes by Velenik [51] and references therein.

Figure 2. An Ising configuration, when 1
T

= 0.9. Courtesy of V. Beffara.

These two examples illustrate some of the principal challenges of 2-dimensional
statistical mechanics, which are:

– Find the critical parameters of the models.
– Understand the behavior of the model in the sub-critical and super-critical

regimes.
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– Understand the behavior of the system at criticality. Critical systems exhibit
surprising features, and are believed to be universal in the scaling limit, i.e.,
independent of the specific features of the lattice on which the model is defined.
Very precise predictions were established by physicists in the last 30-50 years,
in particular by Nienhuis, Cardy, Duplantier and many others. On the mathe-
matics side, a huge step forward was the introduction of the Schramm-Loewner
evolution by Schramm in [42], a process conjectured to describe the limiting be-
havior of well chosen observables of critical models. Many of these conjectures
were solved in the following years, in particular by Lawler, Schramm, Werner
[35] and Smirnov [45], Chelkak-Smirnov [6]. The importance of these results
was acknowledged with the two Fields medals awarded to Werner (2006) and
Smirnov (2010). Interesting collaborations between the physics and mathemat-
ics communities are emerging, with for example the work of Duplantier and
Sheffield [12].

The general framework for statistical mechanics is the following. Consider an ob-
ject G (most often a graph) representing the physical system, and define all possible
configurations of the system. To every configuration σ, assign an energy E(σ), then the
probability of occurrence of the configuration σ is given by the Boltzmann measure µ:

µ(σ) =
e− E(σ)

Z(G)
.

Note that the energy is often multiplied by a parameter representing the inverse
external temperature. The denominator Z(G) is the normalizing constant, known as
the partition function:

Z(G) =
∑
σ

e− E(σ).

When the system is infinite, the above definition does not hold, but we do not want
to enter into these considerations here.

The partition function is one of the key objects of statistical mechanics. Indeed it
encodes much of the macroscopic behavior of the system. Hence, its computation is
the first question one addresses when studying such a model. It turns out that there
are very few models where this computation can be done exactly. Having a closed
form for the partition function opens the way to finding many exact results, and to
having a very deep understanding of the macroscopic behavior of the system.

Two famous examples are the 2-dimensional Ising model, where the computation
of the partition function is due to Onsager [40], and the dimer model where it is due
to Kasteleyn [20, 21], and independently to Temperley and Fisher [47]. The dimer
model is the main topic of these lectures and is defined in the next section.

1.2. The dimer model. – The dimer model was introduced in the physics and chemists
communities to represent the adsorption of di-atomic molecules on the surface of a
crystal. It is part of a larger family of models describing the adsorption of molecules of
different sizes on a lattice. It was first mentioned in a paper by Fowler and Rushbrooke
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