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RATIONAL INVARIANT TORI, PHASE SPACE
TUNNELING, AND SPECTRA FOR

NON-SELFADJOINT OPERATORS IN DIMENSION 2∗

 M HITRIK  J SJÖSTRAND

A. – We study spectral asymptotics and resolvent bounds for non-selfadjoint perturba-
tions of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of
the unperturbed part is completely integrable. Spectral contributions coming from rational invariant
Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine)
and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, pro-
vided that the strength of the non-selfadjoint perturbation� h (or sometimes� h2) is not too large.

R. – Nous étudions des asymptotiques spectrales et des estimations de la résolvante des per-
turbations non-autoadjointes d’opérateurs h-pseudodifférentiels autoadjoints en dimension 2, en sup-
posant que le flot classique de la partie non-perturbée soit complètement intégrable. Les contributions
spectrales parvenant des tores invariants lagrangiens rationnels sont analysées. En estimant l’effet tun-
nel entre des tores diophantiens et rationnels, nous obtenons une description précise du spectre dans
une région convenable du plan complexe spectral, sous l’hypothèse que la force de la perturbation non-
autoadjointe� h (ou parfois� h2) ne soit pas trop grande.

1. Introduction

In [24], A. Melin and the second author observed that for large and stable classes of non-
selfadjoint analytic (pseudo)differential operators in two dimensions, the individual eigen-
values can be determined up to arbitrarily high powers of the semiclassical parameter by a
complex Bohr-Sommerfeld quantization condition. This is quite analogous to known re-
sults in dimension one in the selfadjoint case [8], [3], [7], and remarkable in the sense that
corresponding results for selfadjoint operators in higher dimensions are known only in very
special situations. Applications to resonances were also given in [24].

∗Research of the first author supported in part by the NSF.
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A natural continuation of [24] was to study non-selfadjoint perturbations of selfadjoint
operators in the semiclassical limit, of the form

(1.1) Pε(x, hDx) = P (x, hDx) + iεQ(x, hDx), 0 < h� 1,

with principal symbol (classical Hamiltonian)

(1.2) pε(x, ξ) = p(x, ξ) + iεq(x, ξ),

either on R2 or on a compact analytic manifold of dimension 2. Here P is selfadjoint so p
is real, and we may assume to fix the ideas that q is real. Both p and q are assumed to be
analytic, at least in the cases when ε� h.

In [14]–[16] we studied the case when the classical flow of p is periodic and showed that
the spectrum has a lattice structure as in [24], with an eigenvalue separation of the order of h
in the real (“horizontal”) direction and of the order of εh in the imaginary (“vertical”) direc-
tion. (In [16] we got richer phenomena near branching point levels.) The methods in [14]–[16]
were based on a reduction to a one-dimensional operator. Again it should be noticed that
the results obtained are more precise than what is currently known in the case of selfadjoint
perturbations. Applications to resonances and the damped wave equation were given. See
also [11].

As in classical works of A. Weinstein [35] and Y. Colin de Verdière [34], the trajectory
averages of q play an important role in the precise formulation of the results. Under much
more general assumptions they allow to estimate the width of the spectrum in the imaginary
directions (see also [19], [29]). It should also be recalled that the real parts of the eigenvalues
distribute according to the same Weyl law as for the unperturbed operator P (see Markus
and Matsaev [22], [21]).

The next step was taken by the authors together with S. Vũ Ngo. c in [17], where we studied
the case when p is classically completely integrable or close to being completely integrable.
In the integrable case, the energy surface p = E0 foliates into invariant Lagrangian tori and
possibly some more complicated sets. The classical flow on each invariant torus has a rota-
tion number which “most of the time” is Diophantine (i.e. poorly approximated by rational
numbers). On such a torus Λ (or more generally on an irrational one), the time averages

〈q〉T =
1

T

∫ T/2

−T/2
q ◦ exp tHpdt

of q along the classical trajectories of p all converge to the space average 〈q〉(Λ) of q over Λ,
when T → ∞. When Λ is a torus with a rational rotation number, or a more general “sin-
gular” invariant set in the foliation of the energy surface p−1(E0), then we need to consider
the whole interval Q∞(Λ) of limits of flow averages as above, and in the rational torus case
we have 〈q〉(Λ) ∈ Q∞(Λ).

In the completely integrable case, the main result of [17] says very roughly that if F0 ∈ R
is a value such that F0 = 〈q〉(Λj) for finitely many Diophantine tori Λ1, ...,ΛN0 in p−1(E0),
and F0 does not belong to Q∞(Λ) for any other invariant set Λ in the energy surface, then
the spectrum can be completely determined in a rectangle [E0−hδ/C,E0 +hδ/C]+ iε[F0−
hδ/C, F0 + hδ/C] modulo O(h∞), where δ is a positive exponent that can be chosen arbi-
trarily small, and ε may vary in any interval of the form hK < ε� 1. Again the eigenvalues
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〈q〉(Λ)

Λ

F0

Q∞(Λ)

F 1. The figure represents the graph of the function Λ 7→ 〈q〉(Λ) as Λ varies
over the set of flow invariant Lagrangian tori in the energy surface p−1(E0). The
vertical segments in the figure correspond to the intervals Q∞(Λ) of limits of flow
averages 〈q〉T , as T →∞, when Λ is a rational invariant torus.

form a (superposition of finitely many) distorted lattice(s), with horizontal spacing ∼ h and
vertical spacing ∼ εh. The proofs were based on the use of suitable exponentially weighted
spaces and Birkhoff normal forms near the Diophantine tori.

Notice that the intervals Q∞(Λ) shrink very fast if Λ are rational tori converging to a
Diophantine torus Λ0. For that reason, there may be plenty of levels F0 satisfying the as-
sumptions of the result above, and we may cover a substantial fraction of the energy band
[E0 − 1/C,E0 + 1/C] + iε[lim inf〈q〉T , lim sup〈q〉T ] with such rectangles.

Nevertheless, the intervalsQ∞(Λ) for the rational tori form sets of positive measure of for-
bidden values for the main result of [17]. In the present paper we shall study what happens
when F0 belongs to finitely many such intervals. Our first attempt was to use secular per-
turbation theory to analyze the individual eigenvalues produced by rational tori. However
this leads to possibly quite serious pseudospectral phenomena for certain one-dimensional
operators, and it is doubtful whether such a program can succeed completely. Instead we
estimated the number of eigenvalues that can be created by such tori and showed that it is
much smaller than the number of eigenvalues created by the Diophantine ones.

Very roughly, the main result of the present paper is as follows: assume that F0 is equal
to 〈q〉(Λj,d) for finitely many Diophantine tori Λj,d (as in the main result of [17]), and that
F0 ∈ Q(Λk,r) \ 〈q〉(Λk,r) for finitely many rational tori Λk,r. We further assume that F0

belongs to no other set Q∞(Λ), for Λ in the foliation of p−1(E0), and we restrict ε to the
interval

(1.3) h� ε ≤ h 2
3 +δ,
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where δ > 0 is any fixed parameter. Then the spectrum of Pε in the rectangle

(1.4) R(ε) = [E0 − ε/C,E0 + ε/C] + iε[F0 − εδ, F0 + εδ]

is of the form Ed ∪ Er, where

• Ed is the union of finitely many distorted lattices as in the main result of [17] (see above)
• Er is a set of cardinality O(ε3/2/h2).

Here we notice that Ed is of cardinality ∼ ε1+δ/h2, so choosing δ small enough we see that
most eigenvalues in the rectangle R(ε) belong to Ed and can be asymptotically determined.

Using secular theory arguments (“partial Birkhoff normal forms”) we simplify the oper-
ator near each rational torus and conclude roughly that the eigenvalues in R(ε) produced
near the rational tori must come from a set in phase space of volume O(ε3/2). In the ab-
sence of Diophantine tori, this leads to the boundO(ε3/2h−2) on the total number of eigen-
values inR(ε). When Diophantine tori are present this has to be combined with the analysis
of [17], via an auxiliary so called Grushin problem. Near the Diophantine tori we have a
nice control on the solution operator, while near the rational tori, we only have the bound
O(exp (Cε3/2/h2)). Luckily, by means of phase space exponential weights we are able to es-
timate the tunnel effect between the tori byO(exp (−1/(Ch))), and thanks to the condition
(1.3) the Grushin problem can be solved globally, leading to the result above.

In a parallel work [13], the first author and San Vũ Ngo. c are currently investigating the
case of larger real perturbations. Here the strategy is quite different and uses KAM theory to
show that the rational tori split into Diophantine ones under the effect of the perturbation.
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in September of 2005. It is a pleasure for him to thank its Centre de Mathématiques for a gen-
erous hospitality. We are grateful to San Vũ Ngo. c for many interesting discussions around
this work and for making a written contribution, which is planned to be used in a future work
of S. Vũ Ngo. c and the first author. Our thanks are also due to the referee for several sugges-
tions leading to the improvement of the presentation in the paper. The research of the first
author is supported in part by the National Science Foundation under grant DMS–0304970
and the Alfred P. Sloan Research Fellowship.

2. Statement of the main results

2.1. General assumptions

We shall start by describing the general assumptions on our operators, which will be the
same as in [17], as well as in the earlier papers mentioned above. Let M denote either the
space R2 or a real analytic compact manifold of dimension 2. We shall let M̃ stand for a
complexification of M , so that M̃ = C2 in the Euclidean case, and in the compact case, we
let M̃ be a Grauert tube of M — see [6] for the definition and further references.

When M = R2, let

(2.1) Pε = Pw(x, hDx, ε;h), 0 < h ≤ 1,
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