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OVERCONVERGENT MODULAR SYMBOLS
AND p-ADIC L-FUNCTIONS

 R POLLACK  G STEVENS

A. – This paper is a constructive investigation of the relationship between classical
modular symbols and overconvergent p-adic modular symbols. Specifically, we give a constructive
proof of a control theorem (Theorem 1.1) due to the second author [19] proving existence and unique-
ness of overconvergent eigenliftings of classical modular eigensymbols of non-critical slope. As an
application we describe a polynomial-time algorithm for explicit computation of associated p-adic
L-functions in this case. In the case of critical slope, the control theorem fails to always produce
eigenliftings (see Theorem 5.14 and [16] for a salvage), but the algorithm still “succeeds” at produc-
ing p-adic L-functions. In the final two sections we present numerical data in several critical slope
examples and examine the Newton polygons of the associated p-adic L-functions.

R. – Cet article est une exploration constructive des rapports entre les symboles modulaires
classiques et les symboles modulaires p-adiques surconvergents. Plus précisément, nous donnons une
preuve constructive d’un théorème de contrôle (Théorème 1.1) du deuxième auteur [19] ; ce théorème
démontre l’existence et l’unicité des « liftings propres » des symboles propres modulaires classiques de
pente non-critique. Comme application, nous décrivons un algorithme en temps polynomial pour le
calcul explicite des fonctions L p-adiques associées dans ce cas-là. Dans le cas de pente critique, le
théorème de contrôle échoue toujours à produire des « liftings propres » (voir Théorème 5.14 et [16]
pour un succédané), mais l’algorithme « réussit » néanmoins à produire des fonctions L p-adiques.
Dans les deux dernières sections, nous présentons des données numériques pour plusieurs exemples
de pente critique et examinons le polygone de Newton des fonctions L p-adiques associées.

1. Introduction

Fix a prime p, and let Γ ⊆ SL2(Z) denote a congruence subgroup of level prime to p. For
k a non-negative integer, let Dk(Zp) denote the space of locally analytic p-adic distributions
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2 R. POLLACK AND G. STEVENS

on Zp endowed with the weight k action(1) of Γ0 := Γ ∩ Γ0(p). In [19], the second author
introduced the space of overconvergent modular symbols, SymbΓ0

( Dk(Zp)); this is the space
of Γ0-equivariant maps from ∆0 := Div0(P1(Q)) to Dk(Zp):{

Φ : ∆0 → Dk(Zp) : Φ(γD) = Φ(D)
∣∣γ−1 for γ ∈ Γ0, D ∈ ∆0

}
.

The space Dk(Zp) admits a surjective map to Symk(Q2
p) inducing a Hecke-equivariant map

SymbΓ0
( Dk(Zp)) −→ SymbΓ0

(Symk(Q2
p)),

which we refer to as the specialization map.
The target of this map is the space of classical modular symbols of level Γ0 and weight k.

By Eichler-Shimura theory, this space is finite-dimensional and contains all systems of
Hecke-eigenvalues which occur in the space of classical modular forms of weight k + 2 and
level Γ0. On the other hand, the source of the specialization map SymbΓ0

( Dk(Zp)) is cer-
tainly an infinite-dimensional space. Nonetheless, in [19], the following control theorem is
given for the specialization map, which can be viewed as an analogue of Coleman’s theorem
on small slope overconvergent forms being classical (see also [16]).

T 1.1. – The specialization map restricted to the subspace where Up acts with
slope strictly less that k + 1

SymbΓ0
( Dk(Zp))(<k+1) −→ SymbΓ0

(Symk(Q2
p))

(<k+1)

is a Hecke-equivariant isomorphism.

The main goal of this paper is to provide an explicit enough description of these spaces of
overconvergent modular symbols to:

1. give a constructive proof of the above theorem (see Theorem 5.12), and
2. perform explicit computations in these spaces, constructing overconvergent Hecke-

eigensymbols.

1.1. Explicit description of modular symbols

Our first step in explicitly constructing overconvergent modular symbols is to give a simple
description of ∆0 = Div0(P1(Q)) as a left Z[Γ]-module in terms of generators and relations
for Γ, any finite index subgroup of SL2(Z).

In the case when Γ is torsion-free (which we will assume for the remainder of the in-
troduction), we will be able to find divisors D1, D2, . . . , Dt ∈ ∆0 such that together with
D∞ := {∞} − {0}, they generate ∆0, and satisfy the single relation((

1 −1
0 1

)
− 1
)
D∞ =

t∑
i=1

(1− γ−1
i )Di

for some γi ∈ Γ (see Theorem 2.6).
To “solve the Manin relations” in such a way that we have only a single relation, we make

use of a fundamental domain for the action of Γ on the upper-half plane with a particularly

(1) In this paper, we will consider right actions on Dk(Zp); moreover, we normalize our weights so that weight 0
corresponds to the trivial action (and thus to weight 2 modular forms).
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OVERCONVERGENT MODULAR SYMBOLS 3

nice shape; we form a fundamental domain whose interior is connected, and whose boundary
is a union of unimodular paths.

Having this single relation in hand, one can construct a symbol ϕ ∈ SymbΓ(V ), where V
is an arbitrary right Z[Γ]-module, by producing elements v1, . . . , vt, v∞ in V satisfying

v∞
∣∣∆ =

t∑
i=1

vi
∣∣(1− γi)

where ∆ = ( 1 1
0 1 )− 1. One simply sets ϕ(Di) = vi, and then extends to all of ∆0.

Note that to be able to write down such elements in V , one needs to be able to solve an
equation of the form

v∞
∣∣∆ = w,

which we will refer to as the difference equation.

1.2. Distributions, moments, and the difference equation

The span of the functions {zj}∞j=0 is dense in the space of locally analytic functions on Zp.
In particular, a distribution µ ∈ Dk(Zp) is uniquely determined by the values {µ(zj)}∞j=0,
its sequence of moments.

Using this description of a distribution by its sequence of moments, one can write down
an explicit solution to the difference equation in these spaces of distributions. Specifically,
let νj be the simple distribution defined by

νj(z
r) =

{
1 if r = j

0 otherwise,

and let ηj ∈ Dk(Zp) be defined by

ηj(z
r) =

{(
r
j

)
br−j if r ≥ j

0 otherwise,

where bn is the n-th Bernoulli number. We then have (see Lemma 4.4)

ηj
∣∣∆

j + 1
= νj+1.

One obtains a general solution of the difference equation by combining these basic solu-
tions.(2) It is interesting that Bernoulli numbers play such a key role in this solution.

(2) The denominators that appear in this solution could potentially cause a problem. It is primarily for this reason
that in the text of the paper we work with D†

k
, a larger space of distributions.
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1.3. Sketch of a proof of Theorem 1.1

Let ϕ in SymbΓ0
(Symk(Q2

p)) be an eigensymbol of slope strictly less than k+ 1. By com-
bining our explicit solution of the Manin relations together with our solution of the differ-
ence equation, we can explicitly compute an overconvergent modular symbol Ψ lifting ϕ. To
produce an eigensymbol lifting ϕ, we consider the sequence

Ψn :=
Ψ
∣∣Unp
λn

where λ is theUp-eigenvalue ofϕ. Since the specialization map is Hecke-equivariant, Ψn also
lifts ϕ. Then, using the fact that the valuation of λ is strictly less than k + 1, we show that
{Ψn} converges to some symbol Φ, which still liftsϕ. By construction, Φ is aUp-eigensymbol
with eigenvalue λ, and is thus the symbol we are seeking.

1.4. Connection with p-adic L-functions

We note that overconvergent Hecke-eigensymbols are directly related to p-adic L-func-
tions. Indeed, let f be a classical modular form on Γ0 of non-critical slope (i.e. with slope
strictly less than k + 1), and let ϕf denote its corresponding classical modular symbol. As
f is assumed to have non-critical slope, by Theorem 1.1, there is a unique symbol Φf in
SymbΓ0

( Dk(Zp))(<k+1) which specializes to ϕf . It is proven in [19] that

Φf ({∞} − {0}) = Lp(f),

the p-adic L-function of f (see also Theorem 6.3 in this paper).

Thus, the above proof of Theorem 1.1 can be converted into an algorithm for computing
p-adic L-functions. Indeed, starting with a modular form f , using standard methods, one
can produce its corresponding modular symbol ϕf . As described above, one lifts ϕf to an
overconvergent symbol, and then iterates the operator Up/λ on this lift. If f is a p-ordinary
modular form, then each application of Up yields an extra digit of p-adic accuracy. Evaluat-
ing at the divisor {∞} − {0} then gives an approximation to the p-adic L-function.

We note that computing p-adic L-functions of modular forms from their definition (i.e.
by using Riemann sums) requires evaluating a sum with around pn terms in order to get n
digits of p-adic accuracy. Such an algorithm is exponential in n, and thus cannot be used
to compute these L-functions to high accuracy even for small p. The above algorithm is
polynomial in n (see [6, Proposition 2.14]), and can be used in practice to compute p-adic
L-functions to very high accuracy.

1.5. Approximating distributions

We now describe a systematic method of approximating distributions which one needs in
order to carry out the algorithm described above.

Recall that µ ∈ Dk(Zp) is uniquely determined by its sequence of moments {µ(zj)} for
j ≥ 0. To approximate such a distribution, one might hope to keep track of the first M
moments, each modulo pN for some integers M,N � 0. Unfortunately, this approach
cannot be used for our purposes because such approximations are not stable under the
matrix actions we are considering; that is, if one has the above data for a distribution µ, one
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