
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 44 fascicule 4 juillet-août 2011

Amnon NEEMAN

Explicit cogenerators for the homotopy category
of projective modules over a ring



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 44, 2011, p. 607 à 629

EXPLICIT COGENERATORS
FOR THE HOMOTOPY CATEGORY

OF PROJECTIVE MODULES OVER A RING

 A NEEMAN

A. – Let R be a ring. In two previous articles [12, 14] we studied the homotopy cat-
egory K(R-Proj) of projective R-modules. We produced a set of generators for this category,
proved that the category is ℵ1-compactly generated for any ring R, and showed that it need not
always be compactly generated, but is for sufficiently nice R. We furthermore analyzed the inclusion
j! : K(R-Proj) −→ K(R-Flat) and the orthogonal subcategory S = K(R-Proj)⊥. And we even
showed that the inclusion S −→ K(R-Flat) has a right adjoint; this forces some natural map to be an
equivalence K(R-Proj) −→ S⊥.

In this article we produce a set of cogenerators for K(R-Proj). More accurately, this set of
cogenerators naturally lies in the equivalent S⊥ ∼= K(R-Proj); it can be used to give yet another proof
of the fact that the inclusion S −→ K(R-Flat) has a right adjoint. But by now several proofs of this
fact already exist.

R. – Soit R un anneau. Dans deux articles antérieurs [12, 14], on a étudié la catégorie
d’homotopie K(R-Proj) des R-modules projectifs. On a construit un ensemble de générateurs pour
cette catégorie et on a démontré que la catégorie est compactement générée de niveau ℵ1 pour chaque
anneau R, mais qu’elle n’est pas toujours compactement générée. Toutefois, pour R un anneau suf-
fisamment raisonnable, la catégorie K(R-Proj) est compactement générée. On a étudié l’inclusion
j! : K(R-Proj) −→ K(R-Flat) et la sous-catégorie orthogonale S = K(R-Proj)⊥. On a même mon-
tré que l’inclusion S −→ K(R-Flat) admet un adjoint à droite ; il s’ensuit qu’une certaine application
naturelle K(R-Proj) −→ S⊥ est une équivalence.

Dans le présent article, on produit un ensemble de cogénérateurs pour K(R-Proj). Plus précisé-
ment, cet ensemble de cogénérateurs appartient naturellement à la catégorie équivalente
S⊥ ∼= K(R-Proj); on peut l’utiliser pour obtenir une nouvelle démonstration du fait que l’inclu-
sion S −→ K(R-Flat) admet un adjoint à droite. Mais il y a déjà plusieurs autres démonstrations de
ce fait.
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0. Introduction

Let T be a triangulated category with products. A subcategory S ⊂ T is called
colocalizing if it is triangulated and closed under products. Given any class of objects T ⊂ T ,
the smallest colocalizing subcategory containing T will be denoted Coloc(T ), and referred
to as the colocalizing subcategory cogenerated by T . If Coloc(T ) = T , then we say that T
cogenerates T . If T has coproducts (that is, T op has products) then we can dualize: a class
of objects T ⊂ T is said to generate T if it cogenerates T op.

For various reasons it is interesting to try to find sets of objects (as opposed to classes)
T ⊂ T which cogenerate T . One reason is that all known proofs of the Brown representabil-
ity theorem depend on producing sets of generators or, dually, of cogenerators. Embarrass-
ingly, the situation is not symmetric. We often know how to produce a set of generators for
some category T , without having the foggiest clue whether the category has a set of cogener-
ators. Thus Brown’s original proof of his representability theorem in [2], which looked at the
case where T was the homotopy category of spectra, depended on the fact that the spheres
are compact generators. It took 36 years before anyone noticed that this category has a suffi-
ciently nice set of cogenerators so that Brown representability also holds for the dual; see [10].

By now it is known how to produce a set of cogenerators in any compactly generated trian-
gulated category; there are two somewhat different treatments of the same set of cogenerators
in Krause [6] and in [11], together with proofs that its existence implies Brown representabil-
ity for the dual. Assuming the category T has a Rosický functor then there is a completely
different construction of a set of cogenerators in [13], and, once again, an argument show-
ing that these cogenerators are nice enough to force Brown representability to hold in the
dual. But it is not clear how useful this observation is; ever since Rosický retracted his result
of [15], we know of relatively few examples where we can directly produce Rosický functors.
Unfortunately this is all we know at present, there is no known general method to produce
cogenerators in categories that happen not to be compactly generated. Hence the interest of
this article: we give a construction of cogenerators in categories known to be well generated
but not compactly generated.

Let R be an associative ring with a unit. Let K(R–Proj) be the homotopy category
of chain complexes of projective R-modules. The main result of this article amounts to
producing an explicit set of cogenerators. But there is a technical wrinkle that we should
now explain: the actual cogenerators we choose naturally lie not in K(R–Proj) but in an
equivalent category that we will often denote by S ⊥. It is now time to elaborate.

In [12, Proposition 8.1] we proved that the natural inclusion j! : K(R–Proj) −→ K(R–Flat)
has a right adjoint j∗ : K(R–Flat) −→ K(R–Proj). In [14, Theorem 3.1] we showed that the
functor j∗ has a right adjoint j∗ : K(R–Proj) −→ K(R–Flat). The functor j! is obviously
fully faithful and it follows formally, from general nonsense about triangulated categories,
that so is the functor j∗. Our cogenerators can naturally be described as objects in the
essential image of j∗.

Let us rephrase this a little. We have a fully faithful functor j! : K(R–Proj) −→ K(R–Flat),
namely the obvious embedding, and it possesses a right adjoint j∗. Define S = K(R–Proj)⊥

to be the full subcategory of K(R–Flat) whose objects are

Ob(S ) = {y ∈ K(R–Flat) | Hom(j!x, y) = 0 ∀x ∈ K(R–Proj)} .
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Then the essential image of the functor j∗ : K(R–Proj) −→ K(R–Flat) is precisely the
subcategory S ⊥ ⊂ K(R–Flat). Our main theorem proves that a certain explicit set of
objects in S ⊥ cogenerates. In order to write down these explicit cogenerators we remind
the reader:

R 0.1. – The natural inclusion K(R–Flat) −→ K(R–Mod) has a right adjoint
J : K(R–Mod) −→ K(R–Flat); the first proof appeared in [14, Theorem 3.2], but since then
there have been other proofs of more general results: see Bravo, Enochs, Iacob, Jenda and
Rada [1, Theorem 3.5 and the third Example in §4], Krause [8, Corollary 3.4], and Saorín
and Št’ovíček [16, Proposition 4.12].

The following statement summarizes the main results of the paper:

T 0.2. – Let the notation be as above. In particular, let S = K(R Proj)⊥

be the category of all K(R Proj)-local objects in K(R Flat). Then the objects of

S ⊥ = {K(R Proj)⊥}
⊥

are cogenerated by the chain complexes J
(
HomZ(I,Q/Z)

)
∈

K(R Flat), where

1. The functor J is the right adjoint to the inclusion K(R Flat) −→ K(R Mod).
2. I runs over the bounded below chain complexes of injective right R-modules, which

satisfy the following two conditions:
(a) All but finitely many of the groups Hi(I) vanish.
(b) For all i, Hi(I) is isomorphic to a subquotient of a finitely generated, projective

right R-module.

The proof may be found in Theorem 4.7.

R 0.3. – In the process of proving Theorem 4.7 we discover that we also give
yet another proof of the existence of a right adjoint to the natural inclusion i∗ : S −→ K(R–Flat).
More explicitly the argument goes as follows: it is easy to show that the objects
J
(
HomZ(I,Q/Z)

)
all lie in S ⊥; see Remark 2.7. One immediately deduces the inclu-

sion Coloc(S) ⊂ S ⊥. Given an object y ∈ K(R–Flat) we will show how to construct a
triangle

s −→ y −→ t −→ Σs

with s ∈ S and t ∈ Coloc(S); this will automatically prove both the existence of the right
adjoint to the functor i∗ and the fact that Coloc(S) = S ⊥.

R 0.4. – When the ringR is right coherent, we find that the proof of Theorem 4.7
can be done without making use of the functor J . The argument of this paper simplifies
substantially when R is right coherent. Part of the reason is that, when R is right coherent,
the category K(R–Proj) is compactly generated, and for compactly generated categories
there is a standard way to construct cogenerators. The standard cogenerators are the Brown-
Comenetz duals of the compact objects; in §5 we will see that, for right coherent R, the set
of cogenerators we give in Theorem 0.2 includes the standard ones.

The remarkable feature of our construction of cogenerators is its generality. For generalR
the category K(R–Proj) is only well generated and not compactly generated, and there is
no known procedure to construct cogenerators. It is known that the recipe that works for
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compactly generated categories does not generalize; this can be restated as saying that a
certain abelian category does not have enough injectives, see [11, Appendix D.2]. What
we produce here amounts to the first known example of cogenerators in a non-compactly-
generated but well generated triangulated category.

R 0.5. – In the special case where R is commutative, noetherian and of finite
Krull dimension there is already a discussion of S ⊥ in the literature; see Enochs and
Garcia [3, Theorem 4.6]. We should also mention the growing literature on related topics: see
Bravo, Enochs, Iacob, Jenda and Rada [1], Jørgensen [5], Iyengar and Krause [4], Krause [7,
8], Murfet [9], and Saorín and Št’ovíček [16].
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1. Tensor-phantom maps

This section is devoted to technical preliminaries. The highlights are Definitions 1.1 and
1.3, as well as Lemma 1.9. The reader wishing to form an overall impression of the proof
might wish to read just the two definitions and the statement of the lemma, and then proceed
to §2. The current section contains the hard work in the article, but the reader might prefer
to first have an idea why we bother.

D 1.1. – A test-complex I is a bounded below chain complex of injective right
R-modules, with Hi(I) = 0 for all but finitely many i ∈ Z. For those i ∈ Z for which
Hi(I) 6= 0, we insist that Hi(I) must be isomorphic to a subquotient of a finitely generated,
projective right R-module.

R 1.2. – The definition is intended to ensure that, up to homotopy equivalence,
there is only a set of test-complexes. Up to isomorphism, the collection of finitely generated,
projective right R-modules forms a set. Hence so do all their subquotients. Therefore the
triangulated subcategory R, that these subquotients generate in Db(R–Mod), is essentially
small. The test-complexes are injective resolutions of some of the objects in R; there is only
a set of them, up to homotopy equivalence.

D 1.3. – Let Y and Z be objects in K(R Flat). A morphism f : Y −→ Z is
called tensor-phantom if, for every test-complex I as in Definition 1.1, the map

I ⊗R Y
1⊗f−−−−→ I ⊗R Z

vanishes in cohomology. That is, the induced maps Hi(I ⊗R Y ) −→ Hi(I ⊗R Z) all vanish.

R 1.4. – The tensor-phantom maps form an ideal, in the category K(R–Flat).
We remind the reader: this means

(i) If g, g′ : Y −→ Z are two tensor-phantom maps, then g + g′ is also tensor-phantom.
(ii) If f : X −→ Y , g : Y −→ Z and h : Z −→ Z ′ are maps of chain complexes, and if g is

tensor-phantom, then gf : X −→ Z and hg : Y −→ Z ′ are also tensor-phantom.
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