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GLOBAL WELL-POSEDNESS
FOR THE 2D STABLE MUSKAT PROBLEM IN H3/2

BY Dieco CORDOBA aND OMAR LAZAR

ABSTRACT. — We prove a global existence result of a unique strong solution in H 5/2 with small
H3/2 semi-norm for the 2D Muskat problem. Hence, allowing the interface to have arbitrary large
finite slopes and finite energy (thanks to the L2 maximum principle). The proof is based on the use
of a new formulation of the Muskat equation that involves oscillatory terms. Then, a careful use of
interpolation inequalities in homogeneneous Besov spaces allows us to close the a priori estimates.

RESUME. — Nous prouvons un résultat d’existence globale d’une unique solution forte dans H 5/2
en supposant que la semi-norme H 3/2 soit petite pour le probleme de Muskat 2D. Ceci permet donc
d’avoir des interfaces dont la pente peut étre arbitrairement grande et finie (grace au principe du maxi-
mum L?). La preuve est basée sur I'introduction d’une nouvelle formulation de I'équation de Muskat
en termes d’intégrales oscillantes. Ensuite, une utilisation minutieuse d’inégalités d’interpolations dans
des espaces de Besov homogenes permet de clore les estimations a priori.

1. Introduction

In this paper, we are interested in the Muskat problem which was introduced in [27] by
Morris Muskat in order to describe the dynamics of water and oil in sand. The Muskat
problem models the motion of an interface separating two incompressible fluids in a porous
medium. One can imagine the plane R? split into two regions, say I'; (¢), I'»(¢) that evolve
with time. We assume that the first region I'; (¢) is occupied by an incompressible fluid with
density p; and the second region I'»(¢) is occupied by another fluid with density p,. We
further assume that both fluids are immiscible. The non mixture condition allows one to
consider the interface between these two fluids. This interface corresponds to their common
boundary dI'; (¢) and dI'2(¢). The velocity in each region I';(¢) (i = 1 or 2) is governed by
the so-called Darcy’s law [18], which states that the velocity depends on the gradient pressure,
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1316 D. CORDOBA AND O. LAZAR

the gravity and the density of the fluid (which is transported by the flow) via the following
relation,

(1.1) Pu.t) ==vp—(0.2p).

where p is the constant viscosity, « is the permeability of the porous media and g is the
gravity. For the sake of simplicity, we may, without loss of generality, assume that all those
constants are equal to 1. The system is then driven by the following transport equation

(1.2) dp+u-Vp=0.
Since the fluids are incompressible we also have
(1.3) V.-u=0.
Equations (1.1), (1.2) and (1.3) give rise to the so-called incompressible porous media system
(IPM). Saffman and Taylor [31] pointed out that in 2D the Muskat problem is similar to the
evolution of an interface in a vertical Hele-Shaw cell.

For the Muskat problem we can rewrite the IPM system in terms of the dynamics of the

interface in between both fluids (see [1] and [14]). If we denote the interface by a planar
curve z (e, t) and if we neglect surface tension, then the interface satisfies

p2—p1 [ zi(a,t) —z1(B,1)
2w |Z(a,t)—Z(ﬂ,[)|2(aaz(a’t)_8/32(,8»[))d,3,

where the curve z is asymptotically flat at infinity i.e., (z(«, ) — (@, 0)) — O as |a| — oo. The
point (0, co) belongs to I'; (¢), whereas the point (0, —oo) belongs to I';(¢). From elementary
potential theory, we can derive explicit formulas for the velocity field u and the pressure p
from the curve z.

0:z(a,t) =

A convenient way of studying the evolution of the interface is to consider this latter as
a parametrized graph of a function. When the interface is a graph of a function z(x,t) =
(x, f(x,1)), then this characterization is preserved locally in time by the system and f satis-
fies the contour equation

(1.4) Ji(x, 1) = =p(Af +T(f)).
where p is equal to #2252, and the operator A¥, 0 < y < 2, denotes the usual fractional
Laplacian operator of order y and is defined as

f0) = flx =),

ly[t+Y

’

AV f = (=A)Y2f =C,P.V.
R

where C,, > 0 is a positive constant. In particular, when y = 1, the constant is equal to %
The operator ¢/ denotes the Hilbert transform operator which is defined by

(,%f:lpy'/wda'
T o

In particular, one may easily check that 9, $# = A.
As for T, which is the nonlinear term, it is defined by

0 f(x) = e f(x —)  (LE=C=0)?
« 1+ (M)

(1.5) ()=~ /R

2a’oz.
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Equivalently, the Muskat equation can be written as
0 f = PVB /arctanAafdoe

f(x,O) = fo(x).
where Ay f = f(x,t)—‘{(x—a,t) — SD(fO(!x,t).

(M) :

Indeed, it is well known that linearizing ¢/ around the flat solution gives rise to the
fractional heat equation f; = pAf (see e.g., [1] and [14]). The equation is linearly stable
if and only if the heavier fluid is below the interface (that is p, > p;), otherwise we say that
the curve is in the unstable regime. This is known as the Rayleigh-Taylor condition and is
determined by the normal component of the pressure gradient jump at the interface having
a distinguished sign (also called the Saffman-Taylor condition).

This equation has attracted the attention of the mathematical community in the past
several years and we shall briefly sum up the results known regarding the Cauchy problem
for (M) in the stable regime (p > 0). First of all, let us recall that this equation has a
maximum principle for || f(-,#)||re and || f(:,#)||z2. Indeed, it is shown in [15] that

| foll oo ®)
14+t

Moreover, the authors showed in [15] that if |0 fo|lLee < 1,then ||0x f (-, ¢)||Loe < ||0x follzoe
for all# > 0. On the other hand, there is also an L? maximum principle (see [12]). More

I/ Ollzoom) =

precisely we have

||f(T)||Lz(R)+/ /[log (1+ (f(a .8) — /J;(ﬁ s)) )dadﬁds= 1 follZ2 -

This does not imply, for large initial data, a gain of regularity in the system. However, it
was observed in [22] that a gain of regularity is possible even if we start with L? initial
data, under the condition that the slope is initially less than 1 (see [22]). Recall that the
Muskat equation has a scaling: if f is a solution associated to the initial data fy, then the
function A~ f(Ax, A1), A > Ois also a solution for the corresponding initial data A =1 fo(1x).
In particular, the Lipschitz norm W1 is critical as well as the homogeneous Sobolev
norm H3/%. More generally, the whole family of homogeneous Besov spaces B;,Jgp ' with
(p,q) € [1, +00]? is critical with respect to the scaling of oM.

As far as the local well-posedness results are concerned, in [14], the authors proved local
existence in H3. The authors of [10] were able to lower the local theory to H2. Recently, in
[13], Constantin, Gancedo, Shvydkoy and Vicol have proved that the equation is locally well-
posed in W22 with p > 1. There is another result by Matioc [26] where local existence is
obtained in H*, s € (3/2,2]. Instant analyticity is obtained in [9] from any initial data in H*
(see also [20]).

If the heavier fluid is above the interface, i.e., p < 0, then the equation (/) is ill-posed in
Sobolev spaces (see [14] and [3]). However, there exists weak solutions to the (IPM) system
starting with an initial data with a jump of densities in the unstable regime. These solutions
create a zone around the initial interface where the two fluids mix. This zone grows over time,
for more details see [28], [33], [7] and [21].
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