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JOININGS CLASSIFICATION AND APPLICATIONS
[after Einsiedler and Lindenstrauss]

by Menny Aka

Introduction

Fix a group A and consider a set ofmeasure-preserving actions of A on Xi=(Xi, Bi, µi),
i=1, . . . , r, where Xi is a Borel probability space with a measure µi and a σ-algebra Bi.
Consider the joint action (also called the diagonal action) of A on

X = (X1 × · · · × Xr, B1 × · · · ×Br)

given by a.(x1, . . . , xr) = (a.x1, . . . , a.xr). A (r-fold) joining of the systems {Xi}r
i=1 is

an A-invariant probability measure µ on X with (πi)∗ µ = µi for i = 1, . . . , r where
πi : X → Xi is the natural projection map.

There always exists at least one joining, namely the trivial joining, which is the
product measure µ1 ⊗ · · · ⊗ µr. When this is the only possible joining of the systems
{Xi}r

i=1 one says that these systems are disjoint. The systematic study of joinings
stems from Furstenberg’s seminal paper (FURSTENBERG, 1967). Furstenberg marked
an analogy between joinings and the arithmetic of integers: saying that twomeasure-
preserving systems are disjoint is analogous to saying that their least common mul-
tiple is their product. The analogy works in one direction; measure-preserving sys-
tems admitting a non-trivial common factor are never disjoint: recall that a factor
of a measure-preserving system X = (X, B, µ, A) is a measure-preserving system
Y = (Y, C , ν, A) and a measure-preserving map ϕ : X → Y which intertwines the
action of A, that is, for all a ∈ A we have a.ϕ(x) = ϕ(a.x) for µ-almost every-
where. Like integers, any measure-preserving system has itself and the trivial sys-
tem (one-point system) as factors. Moreover, like integers, as stated above, if two
measure-preserving systems have a common factor, they have a non-trivial joining,
called the relatively independent joining over a common factor (see e.g., EINSIEDLER
and WARD, 2011, §6.5). FURSTENBERG (1967) asked if this analogy also works in the
other direction: if two systems do not have any common factor, must they be disjoint?
RUDOLPH (1979) answered negatively, providing the first counterexamples. Joinings
are nonetheless a strong tool in ergodic theory, as exemplified by GLASNER (2003)
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which gives a complete treatment of ergodic theory via joinings. The broad applica-
bility of the classification of possible joinings of certain systems was already visible
in the work of FURSTENBERG (1967), where he solves a question in Diophantine ap-
proximation using joinings. We refer the reader also to the recent survey of DE LA RUE
(2020) about the broad use of joinings in ergodic theory.

Roughly said, the study of joinings is the study of all possible ways two systems
(or r systems) can be embedded as factors of another system, which is in turn spanned
by them. When two systems are not disjoint, this is a sign that there is strong relation
between them. The main topic of this survey is a very good example of this principle.
This is a survey of the work of Einsiedler and Lindenstrauss on joinings of higher-rank
torus actions on S-arithmetic homogeneous spaces (EINSIEDLER and LINDENSTRAUSS,
2019), which extends their previous paper (EINSIEDLER and LINDENSTRAUSS, 2007). They
consider torus actions on two (or r) homogeneous spaces which are quotients of S-
arithmetic points of perfect algebraic groups, equipped with the uniform Haar prob-
ability measure on each quotient. They show in particular that if such systems are
not disjoint, there must be a strong algebraic relation between the corresponding per-
fect algebraic groups, exemplifying the principle stated above. This may remind the
reader of the folklore Goursat’s Lemma from group theory; while the latter is a natu-
ral structural theorem about subgroups of a product, the joining theorem of Einsiedler
and Lindenstrauss is a striking instance of measure rigidity, where the existence of
non-trivial joinings in this setting can only be due to a strong algebraic relation.

The main result of EINSIEDLER and LINDENSTRAUSS (2019, Theorem 1.7) classifies
joinings on higher-rank torus actions on a product of two (or r) homogenous spaces
of the form

Γ1\G1(QS)× Γ2\G2(QS)

as we now state after recalling the necessary definitions. The measure spaces we con-
sider are S-arithmetic homogeneous quotients of perfect groups. More precisely, let
G be a perfect Zariski-connected linear algebraic group defined over Q and let S be
a finite set of places of Q. Let QS denote ∏s∈S Qs (with Q∞ = R). An S-arithmetic
quotient is a quotient space of the form Γ\G with G being a finite-index subgroup
of G(QS) and Γ is an irreducible arithmetic lattice commensurable to G(OS). Here,
OS denotes the ring of S-adic integers. Such an S-arithmetic quotient is said to be
saturated by unipotent if the group generated by all unipotent elements of G acts er-
godically on Γ\G. For example, for G = SLn (or more generally simply-connected
algebraic groups) the quotient Γ\G(QS) is saturated by unipotents.

A probability measure µ on an S-arithmetic quotient Γ\G is called algebraic over
Q if there exists an algebraic group H defined over Q and a finite-index subgroup
H < H(QS) such that µ = mΓHg where g ∈ G and mΓHg denotes the normalized
Haar measure on a single (necessarily closed, by the finiteness of µ) orbit - see §2.1
for a detailed definition.
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The joinings we aim to classify are joinings of S-arithmetic quotients Xi = Γi\Gi
which are saturated by unipotents, equipped with Haar probability measures
mXi = mΓ\G, and a torus action which we now define. Following the notation of
EINSIEDLER and LINDENSTRAUSS (2019) we say that a subgroup A < G is of class-A ′

if it is simultaneously diagonalizable and the projection of a ∈ A to G(Qs) for any
s ∈ S satisfies the following: for s = ∞ it has only positive real eigenvalues, and for
s equal to a finite prime p, we assume that all the eigenvalues are powers of θp for
some θp ∈ Q×

p with
∣∣θp
∣∣

p 6= 1 chosen independently of a ∈ A. A homomorphism
ϕ : Zd → G is said to be of class A ′ if it is proper and ϕ(Zd) is of class-A ′. The term
higher-rank torus action refers to such a homomorphism with d ⩾ 2. We are ready to
state the main theorem of EINSIEDLER and LINDENSTRAUSS (2019, Theorem 1.7):

Theorem 1.1 (Einsiedler–Lindenstrauss, 2019). Let r, d ⩾ 2 and let G1, . . . , Gr be per-
fect algebraic groups defined over Q, G = ∏ Gi, and S be a finite set of places of Q. Let
Xi = Γi\Gi be S-arithmetic quotients for Gi < Gi(QS) which are saturated by unipotents
and set G = ∏r

i=1 Gi and X = ∏r
i=1 Xi. Let ϕi : Zd → Gi be homomorphisms such that

ϕ = (ϕ1, . . . , ϕr) : Zd → G is of class-A ′, and such that the projection of ϕi to every Q-
almost simple factor of Gi(QS) is proper. Let A = ϕ(Zd) and suppose µ is an A-invariant
and ergodic joining of the actions of Ai = ϕi(Z

d) on Xi equipped with the Haar measure
mXi . Then, µ is an algebraic measure defined over Q.

This theorem exemplifies the above principle concerning disjointness: let H < G

be the group showing the algebraicity of µ. If H = G then µ is the trivial joining.
Otherwise, H arises from a very strong relation between the algebraic groups Gi.
Indeed, certain of their Q-simple factors need to be isogenous over Q. In particular,
if Gi are pairwise non-Q-isogenous almost simple groups, any joining must be the
trivial one. This situation strongly echoes Goursat’s Lemma from group theory.

Taking again the broader viewpoint of measure rigidity for torus action (or Zd-
actions) on homogeneous spaces, Theorem 1.1 is the most complete result in this
context. Such rigidity results are currently only possible under a positive entropy
assumption. In our context, the positive entropy assumption is hidden in the as-
sumption that we join homogeneous spaces equipped with the Haar probably mea-
sure on each quotient (we give more details below). Moreover, the assumption that
the groups are perfect is essential: considering more general groups in both factors
would allow to recast the classification of Zk-actions on solenoids (including the zero
entropy case - a notoriously difficult problem), as a classification problem of joinings.

Theorem 1.1 is already interesting when r = 2 and G1 = G2 = SLn for n ⩾ 3
and d ⩾ 2, or for G1 = G2 = SL2 × SL2 and d = 2. While reading this survey,
the reader is advised to concentrate on these cases. Indeed, the techniques used and
the main steps of the proofs of EINSIEDLER and LINDENSTRAUSS (2007) and EINSIEDLER
and LINDENSTRAUSS (2019) are already visible when one considers the case where G1
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and G2 are equal to SLn for n ⩾ 3 or to SL2 × SL2, and where S = {∞}, that is,
where we consider real Lie groups. Therefore, apart from describing the main re-
sult of EINSIEDLER and LINDENSTRAUSS (2019) in this introduction, we will reduce this
survey to these cases.

To end this introduction we present a few images of the following arithmetic ap-
plication (AKA, EINSIEDLER, and SHAPIRA, 2016) which appeared at the same time as
(EINSIEDLER and LINDENSTRAUSS, 2019). We discuss further applications in §6.

For D ∈ N write

S2(D) =
{
(x, y, z) ∈ Z3 : x2 + y2 + z2 = D, gcd (x, y, z) = 1

}
.

By Legendre and Gauss we have S2(D) 6= ∅ if and only if D 6= 0, 4, 7 mod 8.
Consider

PD :=
1√
D

· S2(D) ⊂ S2 :=
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
. (1)

By a celebrated theorem of DUKE (1988), based on a breakthrough of IWANIEC (1987),
PD equidistribute on S2 when D → ∞ along D 6= 0, 4, 7 mod 8. That is, the following
weak-* convergence

µD :=
1

|S2(D)| ∑
v∈S2(D)

δ v√
D
−→ mS2

holds, where mS2 is the uniform (cone) measure on S2.
Wewish to join this equidistribution problemwith another equidistribution prob-

lem in a natural way. For each v ∈ S2(D) we consider the two-dimensional lattice
Λv := v⊥ ∩ Z3 which we can consider up to rotation as lying in a fixed plane of
Q3. We denote it by [Λv] and call it the (shape of the) orthogonal lattice of v. The set
QD :=

{
[Λv] : v ∈ S2(D)

}
can be considered as a subset of the modular surface

X2 := SL2(Z)\H which parametrizes the space of two-dimensional lattices up to
rotation, and carries a natural invariant probability measure mX2 . A careful analysis
(see e.g., ELLENBERG, MICHEL, and VENKATESH, 2013, §5.2) shows that the normalized
countingmeasure on QD also equidistributes as D → ∞ to mX2 , by a variant ofDuke’s
Theorem. This construction yields the following natural problem: does the normal-
ized counting measure on

JD :=
{
(v, [Λv]) : v ∈ S2(D)

}
(2)

equidistribute to the product measure mS2 ⊗ mX2 when D → ∞ with D 6= 0, 4, 7
mod 8?

We conjecture that it does (mainly becausewedon’t see a reasonwhy it shouldn’t).
Here is some “visible” evidence: for the D’s below, we divide the modular sur-
face X2 using the height function into two (resp. three) equal mX2 -measure regions
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and call lattices in each region non-stretched/stretched (resp. non-stretched/mildly
stretched/super-stretched) and color each point on 1√

D
· S2(D) with a different color

according to the type of its orthogonal lattice. In figures 1 and 2 below, one can see
the distribution of the corresponding points together with the number of points of
each type for D = 101, 8011, 104851, 14500001.

Figure 1: non-stretched vs. stretched

Both equidistribution problems in S2 and in X2 may be individually phrased as
two individual equidistribution problems on an S-arithmetic (or adelic) quotient as
defined above (see § 6.1 for more details). Linnik could prove these results under
a congruence condition on D modulo a fixed arbitrary prime (see § 6.1 for more de-
tails). It turns out that the coupling of v ∈ S2(D) with its orthogonal lattice [ΛD]

gives rise to a joining of the above S-arithmetic quotient. Under congruence con-
ditions at two fixed arbitrary primes, one could apply Theorem 1.1 to deduce the
equidistribution of the normalized countingmeasure on JD to mS2 ⊗X2 when D → ∞
along D 6= 0, 4, 7 mod 8 and the congruence conditions modulo the above two fixed
primes. Recently BLOMER and BRUMLEY (2020) showed that under the Generalized
Riemann Hypothesis, the above equidistribution holds along D 6= 0, 4, 7 mod 8
without any congruence conditions.

1.1. Bird’s-eye view and the organization of this survey

Let’s give a (very subjective and entropy-centred) bird’s-eye view of the main in-
gredients used in the proofs of the main theorems of the works EINSIEDLER and
LINDENSTRAUSS (2007, 2019). There are four main ingredients, all related to entropy:
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