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HIGH-DIMENSIONAL EXPANDERS
[after Gromov, Kaufman–Kazhdan–Lubotzky, and others]

by Uli Wagner

1. Introduction

Informally speaking, expander graphs combine two seemingly contradictory proper-
ties: they are very sparse yet at the same time highly connected. There are several
different ways of quantifying mathematically what it means for a graph to be “highly
connected”, leading to different definitions of expansion (which, however, turn out to
be essentially equivalent). Arguably the most elementary one is edge expansion:

Definition 1.1 (Edge Expansion). Let X = (V, E) be a graph.(1) For disjoint subsets
S, T ⊂ V, let E(S, T) denote the set of edges of X between S and T. We say that X is
η-edge expanding, for some η ⩾ 0, if

|E(S, V \ S)|
|E| ⩾ η · min{|S|, |V \ S|

|V| (∀S ⊂ V, S 6= ∅, V) (1)

The edge expansion of X (also called Cheeger constant) is defined as the optimal η such
that (1) holds, i.e.,

h(X) := min
S : ∅ 6=S⊊V

|E(S, V \ S)|
min{|S|, |V \ S|} · |V|

|E| (2)

By definition, we have h(X) > 0 if and only if X is connected.
As a trivial example (which, however, will play an important role later on, for

generalizations to higher dimensions), the complete graph Kn on n vertices satisfies

h(Kn) = 1 + o(1)
(1)Throughout we will assume all graphs to be finite, simple (no loops or multiple edges) and

undirected, unless explicitly stated otherwise. For disjoint subsets S, T of V, we will denote by
E(S, T) := {vw ∈ E : v ∈ S, w ∈ T} the set of edges between S and T, and for a vertex a vertex v ∈ V, we
denote by deg(v) = |{w ∈ V | vw ∈ E}| the degree (also called valency) of v in X.
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Definition 1.2. An infinite family of finite graphs Xn, n ∈ N, is called a family of
(bounded-degree) expander graphs if the graphs are of uniformly bounded degree
and their edge expansion is uniformly bounded away from zero, i.e., there are η > 0
and k ∈ N such that h(Xn) ⩾ η and degXn

(v) ⩽ k for all vertices v of Xn and all
n ∈ N.

Families of expander graphs were shown to exist by probabilistic arguments by
KOLMOGOROV and BARZDIN (1993) and PINSKER (1973). The first explicit construc-
tion of a family expander graphs was given by MARGULIS (1973) (using Kazhdan’s
Property (T)), and by now, many different constructions are known. Expansion and
expander graphs play an important role in many different areas of mathematics and
computer science and are the source of deep connections between them, see for in-
stance the surveys by HOORY, LINIAL, and WIGDERSON (2006) or LUBOTZKY (2012).

The goal of this exposé is to offer a glimpse of the emerging theory of high-
dimensional expanders, which is still in a formative stage, but has already led to a
number of striking results and applications (see, e.g., LUBOTZKY (2018) for a recent
survey, including many topics that we will neglect). One interesting aspect is that
even the definition of higher-dimensional expansion is not at all obvious and that,
unlike in the case of graphs, there is a rich array of mutually non-equivalent notions
of high-dimensional expansion, each of interest in its own right and with its own
applications.

Here we will mainly focus on three notions of high-dimensional expansion that
have a strong topological flavor and that have played an important role in the de-
velopment of the field in the last decade: the first is topological expansion (also
called the topological overlap property), which is defined in terms of maps from a d-
dimensional simplicial complex to Rd; the second is coboundary expansion, which gen-
eralizes edge-expansion of graphs and provides a quantitative version of vanishing
F2-cohomology of a complex in higher dimensions; the third is cosystolic expansion,
which is a weakening of coboundary expansion that allows for non-vanishing F2-
cohomology. Infomally, these notions are related by the following series of implica-
tions:

coboundary expansion ⇒ cosystolic expansion ⇒ topological expansion

2. Topological Overlap and Topological Expanders

As a starting point, let us consider the following classical result in discrete geometry,
due to BOROS and FÜREDI (1984) (for d = 2) and BÁRÁNY (1982) (for general d), which
at first may seem to have little to do with to expansion:
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Theorem 2.1. Let P be a set of n points in R2. Then there exists a point R2 that is contained
in at least (

2
9
+ o(1)

)(
n
3

)
of the triangles (convex hulls of triples of points) spanned by the points in P.

More generally, for every set P of n points in Rd, there exists a point Rd that is contained
in at least

(cd + o(1))
(

n
d + 1

)
of the affine d-simplices (convex hulls of d + 1 points) spanned by the points in P, where
cd > 0 is a constant that depends only on d.

Theorem 2.1 has led to a host of related results and applications, see MATOUŠEK
(2002, Ch. 9). Determining the optimal value of the constant cd is a well-known open
problem. It is known that c2 = 2/9 is optimal, and an analogous construction in
higher dimensions shows cd ⩽ (d+1)!

(d+1)d+1 = e−Θ(d) (BUKH, MATOUŠEK, and NIVASCH,
2010). On the other hand, Bárány’s proof yields cd ⩾ (d + 1)−d, and despite several
later improvements, the best known lower bound is still of the form e−Θ(d log d).

Theorem 2.1 can be restated as follows. Let ∆d
n denote the complete d-dimensional

simplicial complex on n vertices (in other words, the d-dimensional skeleton of the
(n − 1)-dimensional simplex). Then, for every affine map F : ∆d

n → Rd, there is a
point p ∈ Rd that is contained in the F-images of at least a (cd + o(1))-fraction of the
d-dimensional faces of ∆d

n.
GROMOV (2010) showed that this remains true for arbitrary continuous maps:

Theorem 2.2 (Gromov). For every continuous map F : ∆d
n → Rd, there is a point p ∈ Rd

that is contained in the F-images of at least a (ctopd + o(1))-fraction of the d-dimensional faces
of ∆d

n, where ctopd is a constant depending only on d.

Gromov’s argument yields a lower bound of cd ⩾ ctopd ⩾ 2d
(d+1)!(d+1) , recovering

the optimal constant c2 = ctop2 = 2/9 in the plane, and improving on the previously
known bounds for cd by a factor exponential in d for general dimensions; however,
the lower bound is still of the form e−Θ(d log d) and thus far from the upper bound.

One aspect that makes Theorem 2.2 interesting is that for d ⩾ 2 and an arbitrary
continuous map F : ∆d

n → Rd, there is no obvious candidate for the point p. (By
contrast, for d = 1, we can simply take p to be themedian of the images of the vertices;
moreover, for affine maps, as in Theorem 2.1, one can show that the centerpoint of
the vertex images, a generalization of the median, works in any dimension d, albeit
leading to a non-optimal constant, see BUKH, MATOUŠEK, and NIVASCH (2010).)
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Gromov’s argument(2) for the existence of a suitable point p relies on a certain
higher-dimensional expansion property of ∆d

n, coboundary expansion, which general-
izes edge-expansion of graphs (corresponding to 1-dimensional coboundary expan-
sion); the formal definition will be given in Section 3 below. Interestingly, the notion
of coboundary expansion also arose independently (and earlier) in a different con-
text, in the work of LINIAL and MESHULAM (2006) on random complexes.

Gromov’s proof of Theorem 2.2 is remarkably robust and yields a much more
general result as well as a whole new circle of questions:

Definition 2.3. Let X be a finite d-dimensional simplicial complex.

1. We say that X has the ε-topological overlap property, for some real parameter ε > 0,
if for every continuous map F : X → Rd, there exists a point p ∈ Rd that is
contained in at least an ε-fraction of the F-images of d-dimensional faces of X.

2. An infinite family of d-dimensional complexes is a family of topological expanders
if all the complexes in the family have the ε-topological overlap property, for a
uniform ε > 0.

In this language, Theorem 2.1 says that for every d, the complete complexes ∆d
n

form a family of geometric expanders (cf., Remark 2.7), and Theorem 2.2 asserts that
they form a family of topological expanders. As remarked above, Gromov’s proof
leads to a more general result, which can be informally summarized as follows (see
Theorem 4.2 below for the formal statement): every d-dimensional complex that has the
coboundary expansion property in dimensions 1, . . . , d satisfies the topological overlap prop-
erty, with an overlap constant ε that depends on d and on the coboundary expansion
constants of X. GROMOV (2010) showed that various other families of d-dimensional
complexes are coboundary expanders, hence topological expanders, e.g., spherical
buildings; however, none of these examples are of bounded degree, i.e., for each of
these complexes, the number of d-faces containing a given vertex (or even contain-
ing a given (d − 1)-face) tends to infinity with the size of the complex.

This naturally raises the question whether there are, for instance, families of 2-
dimensional topological expanders that are of bounded degree, either in the weak sense
that every edge is contained in a bounded number of triangles, or in the strong sense
that every vertex is contained in a bounded number of triangles.

Both of these questions have been answered affirmatively, the first by LUBOTZKY
and MESHULAM (2015), using a probabilistic construction based on random Latin
squares, and the second by KAUFMAN, KAZHDAN, and LUBOTZKY (2016), using a con-
struction of Ramanujan complexes given by LUBOTZKY, SAMUELS, and VISHNE (2005).
(2)As explained inGUTH (2014), the argument can be seen as analogous to the proof of theWaist Inequality

in GROMOV (1983).
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Let us state these results. For the first, let n ∈ N and let Tn = V1 ∗ V2 ∗ V3 be the
complete tripartite 2-dimensional complex on three pairwise disjoint sets V1, V2, V3 of n
vertices each. (Thus, a subset σ ⊆ V1 t V2 t V3 is a face of V1 ∗ V2 ∗ V3 if and only
if |σ ∩ Vi| ⩽ 1 for i = 1, 2, 3.) Thus, Tn has 3n vertices, 3n2 edges (1-simplices), and
n3 triangles (2-simplices).

For our purposes, a Latin square is a collection L of triangles of Tn such that every
edge of Tn is contained in exactly one triangle in L. (Hence, for every vertex v ∈ Vi
of Tn, the link Lv := {σ \ v | σ ∈ L} forms a perfect matching in the complete bipartite
graph Vj ∗ Vk on the remaining two vertex sets, j, k 6= i.) Let Ln denote the set of all
Latin squares. For D ∈ N, define a randomsubcomplexY(n, D) as follows: Choose D
Latin squares L1, . . . , LD ∈ Ln independently uniformly at random, and let Y(n, D)

be the subcomplex of Tn that has the same 1-skeleton as Tn as whose triangles are
exactly the triangles in L1 ∪ · · · ∪ LD.

Theorem 2.4 (Lubotzky and Meshulam). There exist constants D ∈ N and ε > 0 such
that asymptotically almost surely (with probability tending to 1 as n → ∞), the random
complex Y(n, D) has the ε-topological overlap property. Thus, there exists an infinite family
of 2-dimensional topological expanders that are of bounded degree in the weak sense.

More precisely, Lubotzky andMeshulam show that, asymptotically almost surely,
Y(n, D) has 2-dimensional coboundary expansion at least η, for some other constant
η > 0. The topological overlap property then follows from Gromov’s result (since
the 1-skeleton of Y(n, D), which is a complete tripartite graph, is a very good edge
expander).

The second construction, of a family of 2-dimensional topologocial expanders that
are of bounded degree in the strong sense that the number of triangles containing a
given vertex is bounded by some uniform constant for all complexes is the family,
is considerably more elaborate, and we will treat it mostly as a “black box”, focus-
ing on the properties used in KAUFMAN, KAZHDAN, and LUBOTZKY (2016) to prove the
topological overlap property.

Let q be a large but fixed prime power. For an integer r ⩾ 2. The spherical building
S(r, q) is defined as the complex of flags of nonempty proper linear subspaces of Fr

q,
i.e., the vertices of S(d, q) are the nonempty proper linear subspaces W ⊂ Fr

q, and
a set {W0, W1, . . . , Wk} of subspaces forms a k-dimensional simplex of S(r, q) if and
only if W0 ⊂ W1 ⊂ · · · ⊂ Wk (possibly after reordering the Wi). Thus, S(r, q) is a
simplicial complex of dimension r − 2.

Let us say that a finite 3-dimensional complex X is magical if it has the following
properties:

1. For every vertex v of X, the link Xv of v in X is isomorphic to S(4, q). It follows
that the 1-skeleton X(1) of X is a k-regular graph, where k ∼ q4 is the number
of vertices of S(4, q) (proper nonempty subspaces of F4

q).
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