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AND A METRIC JOHN THEOREM

[after Assaf Naor]

by Alexandros Eskenazis

1. Introduction

Preamble. Themain purpose of this survey is to present a concise exposition of some
applications of the theory of nonlinear spectral gapswhich can serve as a roadmap for
newcomers in the field and experts alike. Having as ourmain focus a result (Theorem
1.1) of NAOR (2021), we shall highlight some ideas which have played a pivotal role
in recent developments and mention connections with classical geometric and algo-
rithmic questions. The material of this paper is a mere expository repackaging of a
selection of such developments and any difference in presentation is solely cosmetic.

Let (M, dM), (N, dN) be two metric spaces and D ∈ [1, ∞). We say that (M, dM)

embeds into (N, dN) with bi-Lipschitz distortion at most D if there exists a scaling
factor σ ∈ (0, ∞) and a map f : M → N such that

∀ x, y ∈ M, σdM(x, y) ⩽ dN
(

f (x), f (y)
)
⩽ σDdM(x, y). (1)

Following NAOR (2021), we say that an infinite(1) metric space (M, dM) em-
beds into (N, dN) with q-average distortion D, where q > 0, if for ev-
ery Borel probability measure µ on M, there exists σ = σµ ∈ (0, ∞)

and a σD-Lipschitz map f = fµ : M → N with∫∫
M×M

dN
(

f (x), f (y)
)q dµ(x)dµ(y) ⩾ σq

∫∫
M×M

dM(x, y)q dµ(x)dµ(y). (2)

If the target space N is a normed space, the parameter σµ can be omitted by rescaling.

The author was supported by a Junior Research Fellowship from Trinity College, Cambridge.
(1)The study of average distortion embeddings for finite metric spaces goes back at least to the work of

RABINOVICH (2003) (see also ABRAHAM, BARTAL, and NEIMAN, 2011 for various related notions).
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The θ-snowflake of a metric space (M, dM) is the metric space (M, dθ
M), θ ∈ (0, 1].

The primary goal of this survey is to present a self-contained proof of the following
deep embedding theorem of NAOR (2021) in which asymptotically optimal bounds
for the quadratic average distortion (i.e. corresponding to exponent q = 2 in equation
(2) above) of 1

2 -snowflakes of finite-dimensional normed spaces into the separable
Hilbert space ℓ2 are established. The, so called, average John theorem reads as follows.

Theorem 1.1 (Average John). There exists a universal constant C ∈ (0, ∞) such that the
1
2 -snowflake of any finite-dimensional normed space (X, ∥ · ∥X) admits an embedding into ℓ2
with quadratic average distortion at most C

√
log(dim(X) + 1).

Theorem1.1 is ametric counterpart of a classical theoremof JOHN (1948), asserting
that any finite-dimensional normed space embeds into ℓ2 with bi-Lipschitz distortion
at most

√
dim(X). This statement is famously optimal, e.g. for X = ℓd

1 or X = ℓd
∞, yet

Naor’s theorem shows that an exponential improvement of the relevant distortion is
possible if one relaxes the pointwise lower bound of the bi-Lipschitz condition (1)
to the averaged requirement (2) and replaces the normed space (X, ∥ · ∥X) by its 1

2 -
snowflake. Before explaining the ideas that come into the proof of Theorem 1.1, it is
worth pointing out that both of these modifications of John’s theorem are necessary
in order to deduce bounds for the distortion which are subpolynomial on dim(X). In
fact, the average John theorem is optimal in three distinct ways.

• If one is interested in bi-Lipschitz embeddings of snowflakes of normed spaces
X into ℓ2 in lieu of average distortion embeddings, then the relevant distortion has to
depend polynomially on dim(X). Indeed, in NAOR (2021, Lemma 2), it is shown that
the bi-Lipschitz distortion required to embed the θ-snowflake of ℓd

∞ into ℓ2 is at least
a constant multiple of dθ/2. The proof relies on metric cotype.

• The exponent 1
2 is the least amount of snowflaking that one needs to perform

in order to obtain embeddings whose quadratic average distortion depends subpoly-
nomially on dim(X). More specifically, in NAOR (2021, Lemma 13) it is shown that
for any ε ∈ (0, 1

2 ], the quadratic average distortion required to embed the ( 1
2 + ε)-

snowflake of ℓd
1 into ℓ2 is at least a constant multiple of dε. The proof relies on Enflo

type.
• Finally,

√
log dim(X) is the asymptotically optimal bound for the quadratic av-

erage distortion required to embed the 1
2 -snowflake of an arbitrary finite-dimensional

space X into ℓ2. This will be further explained (for X = ℓd
∞) in Remark 6.2 below.

In the rest of the introduction, we shall describe the strategy of the proof of the
average John theorem and introduce the necessary background.
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1.1. Nonlinear spectral gaps

Let △n−1 = {(π1, . . . , πn) ∈ [0, 1]n : ∑n
i=1 πi = 1} be the n-dimensional stan-

dard simplex. Consider a (row)-stochastic matrix A = (aij)
n
i,j=1 ∈ Mn(R), that is,

a matrix for which (ai1, . . . , ain) ∈ △n−1 for every i ∈ {1, . . . , n}. Given a vector
π = (π1, . . . , πn) ∈ △n−1, we say that the matrix A is π-reversible if πiaij = πjaji
for every i, j ∈ {1, . . . , n}. These objects admit a classical probabilistic interpretation.
Consider the discrete-time homogeneous Markov chain (Xt)t⩾0 on the state space
{1, . . . , n} with transition probabilities given by

∀ i, j ∈ {1, . . . , n}, P{Xt+1 = j | Xt = i} = aij, (3)

where t ⩾ 0. If the transitionmatrix A is π-reversible, then π is also a stationary distri-
bution for the process (Xt)t⩾0, that is, if X0 is distributed according to π then so is Xt
for any t ⩾ 1. This is expressed algebraically by the matrix identity πA = π, where π

is thought of as a row-vector. In the probabilistic framework above, reversibility sim-
ply means that the Markov process is invariant under time reversal in the sense that
(X0, X1, . . . , XT) has the same joint distribution as (XT , XT−1, . . . , X0) for any T ∈ N.

Consider the Hilbert space L2(π) = (Rn, ∥ · ∥L2(π)) whose (semi-)norm is given
by

∀ x = (x1, . . . , xn) ∈ Rn, ∥x∥L2(π) =
( n

∑
i=1

πix2
i

) 1
2
. (4)

Analytically, the stochastic matrix A is π-reversible if and only if it defines a
self-adjoint contraction on L2(π) with real eigenvalues which we shall denote by
1 = λ1(A) ⩾ λ2(A) ⩾ · · · ⩾ λn(A) ⩾ −1. The spectral gap of A is the alge-
braic quantity 1 − λ2(A) which is known to encode important combinatorial prop-
erties of the matrix. It is a simple linear algebra exercise to show that the reciprocal
γ(A)

def
= (1 − λ2(A))−1 of the spectral gap is the least constant γ ∈ (0, ∞] for which

the inequality

∀ x1, . . . , xn ∈ ℓ2,
n

∑
i,j=1

πiπj∥xi − xj∥2
ℓ2
⩽ γ

n

∑
i,j=1

πiaij∥xi − xj∥2
ℓ2

(5)

holds true. It is a well-known consequence of Cheeger’s inequality (see, e.g.,
DAVIDOFF, SARNAK, and VALETTE (2003)) that upper bounds on γ(A) are equivalent
to good expansion properties of the underlying weighted graph defined by A.

The above analytic characterization of a spectral gap as an optimal constant in a
functional inequality was the starting point for the theory of nonlinear spectral gaps,
of which Theorem 1.1 is the latest application. Let (M, dM) be a metric space and
p ∈ (0, ∞). If π ∈ △n−1 and A is a π-reversible stochastic matrix, the spectral gap of
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A with respect to dp
M, denoted by γ(A, dp

M), is the least γ ∈ (0, ∞] such that

∀ x1, . . . , xn ∈ M,
n

∑
i,j=1

πiπjdM(xi, xj)
p ⩽ γ

n

∑
i,j=1

πiaijdM(xi, xj)
p. (6)

If the metric dM is inherited by a norm ∥ · ∥, we will denote γ(A, dp
M) by γ(A, ∥ · ∥p).

As explained in MENDEL and NAOR (2014), unless M is a singleton, if γ(A, dp
M) is

finite then λ2(A) is bounded away from 1 by a positive quantity depending only on
γ(A, dp

M). On the other hand, obtaining sensible upper bounds for γ(A, dp
M) in terms

of the usual spectral gap 1− λ2(A) is a notoriously hard task even for very structured
metric spaces (M, dM). This difficulty reflects the fact that nonlinear spectral gap
inequalities (6) capture delicate interactions of spectral properties of the matrix A
and geometric characteristics of the underlying metric space (M, dM).

The study of nonlinear spectral gap inequalities (6) has led to very fruitful in-
vestigations which have been impactful in various areas of mathematics and theo-
retical computer science such as metric geometry, geometric group theory, opera-
tor algebras, Alexandrov geometry and approximation algorithms. We refer, for in-
stance, to the works of MATOUŠEK (1997), GROMOV (2003), LAFFORGUE (2008, 2009),
PISIER (2010), NAOR and SILBERMAN (2011), KONDO (2012), MENDEL and NAOR (2013,
2014, 2015), MIMURA (2015), ANDONI, NAOR, NIKOLOV, et al. (2018a,b) and NAOR
(2014, 2017, 2021) (see also Section 6 below for a high-level exposition of some of
those). The pertinence of nonlinear spectral gaps to the study of average distortion
embeddings into normed spaces and Theorem 1.1 stems from an important duality
principle which was discovered by NAOR (2014) and which we shall now describe.

1.2. Duality

Fix π ∈ △n−1 and a π-reversible stochastic matrix A ∈ Mn(R). Let (M, dM) be a
metric space, (Y, ∥ · ∥Y) be a normed space and assume that the θ-snowflake of M
embeds into Y with q-average distortion D ∈ [1, ∞). Then, for x1, . . . , xn ∈ M, there
exist y1, . . . , yn ∈ Y such that ∥yi − yj∥Y ⩽ DdM(xi, xj)

θ for every i, j ∈ {1, . . . , n}
and

n

∑
i,j=1

πiπj∥yi − yj∥
q
Y ⩾

n

∑
i,j=1

πiπjdM(xi, xj)
θq. (7)

Therefore, we have
n

∑
i,j=1

πiπjdM(xi, xj)
θq

(7)
⩽ γ(A, ∥ · ∥q

Y)
n

∑
i,j=1

πiaij∥yi − yj∥
q
Y ⩽Dqγ(A, ∥ · ∥q

Y)
n

∑
i,j=1

πiaijdM(xi, xj)
θq

which implies that γ(A, dθq
M) ⩽ Dqγ(A, ∥ · ∥q

Y). Moreover(2), as tensoriza-
tion gives the identity γ(A, ∥ · ∥q

Y) = γ(A, ∥ · ∥q
ℓq(Y)

) and γ(A, ∥ · ∥q
W) is

(2)As usual, we denote by ℓq(Y) =
{

y = (yn)n⩾1 ∈ YN : ∥y∥ℓq(Y)
def
=

(
∑n⩾1 ∥yn∥q

Y
)1/q

< ∞
}
.
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only determined by the finite-dimensional structure of W, the above simple
argument shows that if the θ-snowflake of M embeds with q-average distor-
tion D ∈ [1, ∞) into any Banach space Z which is finitely representable in
ℓq(Y), then γ(A, dθq

M) ⩽ Dqγ(A, ∥ · ∥q
Y) for any π-reversible stochastic matrix

A ∈ Mn(R). The first important step towards Theorem 1.1 is the following
striking converse to this implication, proven by NAOR (2014, Theorem 1.3).

Theorem 1.2 (Naor’s duality principle). Suppose that q, D ∈ [1, ∞) and θ ∈ (0, 1]. Let
(M, dM) be a metric space and (Y, ∥ · ∥Y) be a Banach space such that for every n ∈ N and
π ∈ △n−1, every π-reversible stochastic matrix A ∈ Mn(R) satisfies

γ(A, dθq
M) ⩽ Dqγ(A, ∥ · ∥q

Y). (8)

Then, for any ε > 0 the θ-snowflake of M embeds into some ultrapower(3) of ℓq(Y) with
q-average distortion at most D + ε.

We emphasize that Theorem 1.2 is an existential result whose proof does not shed
any light on any additional properties of the average distortion embeddings at hand.
Its proof consists of an elegant Hahn–Banach separation argument which we shall
present in Section 2. In the setting of the average John theorem, the metric space M

is a finite-dimensional normed space (X, ∥ · ∥X), Y is the Hilbert space ℓ2, q = 2 and
θ = 1

2 . As any ultrapower of ℓ2 is itself a Hilbert space (see HEINRICH, 1980), Naor’s
duality theorem shows that the embedding statement of Theorem 1.1 is equivalent
to the following comparison estimate for nonlinear spectral gaps.

Theorem 1.3. Let (X, ∥ · ∥X) be a finite-dimensional normed space. Then, for every n ∈ N

and π ∈ △n−1, every π-reversible stochastic matrix A ∈ Mn(R) satisfies

γ(A, ∥ · ∥X) ⩽
C log(dim(X) + 1)

1 − λ2(A)
, (9)

where C ∈ (0, ∞) is a universal constant.

Theorem 1.3 has implicitly appeared as a special case of a much more general re-
sult concerning nonlinear spectral gaps of complex interpolation spaces (NAOR, 2021,
Theorem 25). This family of substantially stronger nonlinear spectral gap inequalities
can be used to prove (via Theorem 1.2) the existence of refined average distortion
embeddings of snowflakes of Banach spaces which are not captured by Theorem 1.1.
This task is undertaken in great detail in NAOR (2021), yet most of these results go be-
yond the scope of the present survey. In Section 4, we shall present a self-contained
(3)We refer to HEINRICH (1980) for background on ultraproducts of Banach spaces. For the purposes of

this discussion it suffices to say that an ultrapower ZU of a Banach space Z is a Banach space containing Z
with various compactness properties such that any finite-dimensional subspace of ZU embeds into Z with
distortion 1 + ε for any ε > 0.
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