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LOCAL MARKED LENGTH SPECTRUM RIGIDITY
[after Guillarmou and Lefeuvre]

by Ursula Hamenstädt

1. Introduction

The search for characterizing a smooth Riemannian metric on a smooth closed mani-
fold M by easy to define geometric quantities has a long and fruitful history, usually
described as rigidity problems.

A particularly appealing rigidity problem can be formulated as follows. Consider
a closed manifold M of dimension n ⩾ 2, equipped with a Riemannian metric g0
of nonpositive sectional curvature. By the Hadamard Cartan theorem, the universal
covering M̃ of M is diffeomorphic to Rn and hence M is a classifying space for its
fundamental group π1(M). Each nontrivial conjugacy class c in π1(M) can be rep-
resented by a closed geodesic γc, of minimal length L(γc) in the corresponding free
homotopy class. If we denote by C the set of all conjugacy classes in π1(M), then
the metric g0 determines a function Lg0 : C → (0, ∞) by defining Lg0(c) = Lg0(γc)

(c ∈ C ). This function is called the marked length spectrum of g0. It also makes sense
for metrics on M which are not nonpositively curved.

The following conjecture was formulated by Burns and Katok BURNS and KATOK
(1985) but may have been known earlier.

Conjecture 1.1. Let g0 be a negatively curved Riemannian metric on a closed manifold M.
If g is another metric on M so that Lg = Lg0 : C → (0, ∞), then g, g0 are strongly isometric.

Here twometrics g, g0 are called strongly isometric if there exists a diffeomorphism
ϕ isotopic to the identity such that ϕ∗g = g0. The following major progress towards
this conjecture is the main result of GUILLARMOU and LEFEUVRE (2019).

Theorem 1.2 (Guillarmou and Lefeuvre). Let g0 be a smooth nonpositively curved metric
on a closed manifold M of dimension n whose geodesic flow is Anosov. Then there exists a
neighborhood U of g0 in the CN-topology for some N > 3n/2 + 8 such that any metric in U
with the same marked length spectrum as g0 is strongly isometric to g0.
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Onemay also consider a similar questionwherewe replace the function Lg0 by the
unmarked length spectrum, that is, we just look at the set of lengths of closed geodesics
on M, viewed as a subset of (0, ∞) with no additional structure. However, this ques-
tion has a negative answer, already for closed hyperbolic surfaces. The first examples
of non-isometric hyperbolic surfaces with the same unmarked length spectrum are
due to Vigneras VIGNÉRAS (1980).

The goal of this survey is to give a short historical account on partial results to-
wards the marked length spectrum conjecture and to outline the main steps of the
proof of Theorem 1.2, giving a more detailed explanation of its assumptions along
the way.

2. Earlier results towards the marked length spectrum
conjecture

Nonpositively curved Riemannianmetrics on closed oriented surfaces of genus h ⩾ 2
have always been considered as a test case for the understanding of negatively curved
metrics on manifolds of all dimensions, although the analogy is problematic due to
the fact that by uniformization, any smoothmetric g on such a surface S is conformally
equivalent to a hyperbolic metric. That is, there is a smooth function ρ on S so that the
metric eρg is of constant curvature−1. This gives strong additional constraints which
do not exist in higher dimension.

In contrast to hyperbolic metrics on closed manifolds of dimension at least 3, a
hyperbolic metric on a surface S of genus h ⩾ 2 is not unique up to isometry: There
is an entire moduli space of isometry classes of hyperbolic metrics on S of dimension
6h − 6. Such hyperbolic metrics can be constructed explicitly, and there is a collec-
tion of 6h − 5 conjugacy classes of simple closed curves on S, that is, curves without
self-intersection, whose lengths completely determine the hyperbolicmetric SCHMUTZ
(1993).

Understanding the marked length spectrum of a negatively curved metric g on
S in a fixed conformal class is already interesting. The corresponding rigidity ques-
tion was answered affirmatively by Katok KATOK (1988). His argument immediately
extends to the following

Theorem 2.1 (Katok). Let g, g0 be two smooth conformally equivalent Riemannian metrics
of negative curvature on a closed manifold M of dimension n ⩾ 2. If g, g0 have the same
marked length spectrum then they are isometric.

The proof of this result is quite short. We present a sketch as it rests on two ba-
sic principles which are important cornerstones for later progress. For this and for
later use, define the geodesic flow Φt on the unit tangent bundle P : T1M → M of

ASTÉRISQUE 438



(1189) LOCAL MARKED LENGTH SPECTRUM RIGIDITY 337

a Riemannian manifold (M, g) by Φtv = γ′
v(t) where γv is the geodesic with initial

velocity v. The flow Φt preserves the Lebesgue Liouville measure µ, which is locally
defined by a smooth volume form on T1M whose integration over the fibers of the
bundle T1M equals the volume element of the metric g on M. Periodic orbits of Φt

are precisely the unit tangent lines of closed geodesics.
If M is closed and the metric on M is negatively curved, then the flow Φt is an

Anosov flow: Let X be its generator. There exists a dΦt-invariant decomposition

TT1M = E+ ⊕ E− ⊕ RX, (1)

and there exists a number α > 0 with

∥dΦ∓tw∥ ⩽ e−αt∥w∥

for every w ∈ E±, with a suitable choice ∥ ∥ of a norm on TT1M defined by some
Riemannian metric. The decomposition (1) is called the Anosov splitting. It is known
to be Hölder continuous, but in general, it is not smooth.

The Anosov property for Φt has the following two consequences. First, the nor-
malized Lebesgue Liouville measure µ̂ = µ/µ(T1M) is ergodic for Φt. This means
that whenever A ⊂ T1M is a Φt-invariant Borel set, then either µ̂(A) = 0 or
µ̂(T1M − A) = 0. In particular, by the Birkhoff ergodic theorem, for any L2-integrable
function f on T1M and for µ̂-almost every v ∈ T1M, we have∫

f dµ̂ = lim
t→∞

1
t

∫ t

0
f (Φsv)ds.

Here the existence of the limit on the right hand side of this equation is part of the
statement of the theorem.

Furthermore, the followingAnosov closing lemma holds true. Let d be any distance
function on T1M defined by a Riemannian metric. Then for any δ > 0, there are
numbers ε = ε(δ) > 0, and T0 = T0(δ) > 0 with the following property. If for some
v ∈ T1M and some T > T0, we have d(v, ΦTv) < ε, then there exists a periodic orbit
η for Φt, of period L(η) ∈ [T − δ, T + δ], such that d(Φtv, η(t)) < δ for all t ∈ [0, T].

Since continuous functions on compact spaces are uniformly continuous, one ob-
tains as a consequence of the Birkhoff ergodic theoremand theAnosov closing lemma
the following.

Corollary 2.2. Let f : T1M → R be a continuous function. Then for every ε > 0 and
T0 > 0, there exists a periodic point v for Φt of period T > T0 such that

| 1
T

∫ T

0
f (Φtv)dt −

∫
f dµ̂| < ε.
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Sketch of a proof of Theorem 2.1. Let g, g0 be negatively curved metrics on the same
closed manifold M such that g = ρg0 for a smooth function ρ on M. Assume that
g, g0 have the same marked length spectrum. By perhaps exchanging g and g0 we
may assume that vol(M, g) ⩽ vol(M, g0) (here vol denotes the volume).

Denote by P : T1M0 → M the unit tangent bundle of M for the metric g0,
equipped with the Lebesgue Liouville measure µ, and let ω be the volume element
of g0 on M. Then ρn/2ω is the volume element for the metric g on M and hence
naturality under pull-back shows that∫

T1 M0

(P∗ρ)n/2dµ = vol(Sn−1)vol(M, g) = vol(T1M, g) ⩽ µ(T1M0). (2)

On the other hand, the integral of the function ρ1/2 over each closed geodesic γ for
the metric g0, parameterized by arc length, is the g-length of γ. As the marked length
spectra of g and g0 coincide, this length is not smaller than the g0-length Lg0(γ) of γ.
Thus if we denote by Φt the geodesic flow on T1M0, then for every periodic orbit η

of Φt, we have ∫
η
(P∗ρ)1/2dt ⩾ L(η) (3)

where L(η) is the period of the orbit (which is just the length of the corresponding
closed geodesic for g0).

Write µ̂ = µ/µ(T1M0). By Corollary 2.2, since the function (P∗ρ)1/2 on T1M0 is
continuous and fulfills the inequality (3) for all periodic orbits η for Φt, we have∫

T1 M0

(P∗ρ)1/2dµ̂ ⩾ 1. (4)

Togetherwith inequality (2), this shows that
∫

T1 M0
(P∗ρ)1/2dµ̂⩾1⩾

∫
T1 M0

(P∗ρ)n/2dµ̂.
It now follows from the Hölder inequality that this is possible only if the function ρ

is constant and hence if g, g0 are isometric.

The proof of Theorem 2.1 motivates the following extension of Conjecture 1.1.

Conjecture 2.3. Let g, g0 be two negatively curved metrics on a closed manifold M. If
Lg(c) ⩾ Lg0(c) for each conjugacy class c ∈ C , then vol(M, g) ⩾ vol(M, g0), with equality
only if g, g0 are strongly isometric.

Shortly after the appearance of the article of Katok, Conjecture 1.1 for surfaceswas
settled by Otal OTAL (1990) and, independently, Croke CROKE (1990). They showed

Theorem 2.4 (Croke, Otal). Let g, g0 be two smooth nonpositively curved metrics on a closed
surface of genus h ⩾ 2. If g, g0 have the same marked length spectrum, then they are isometric.

The approach of both authors is similar and rests on the following two facts. The
first fact is valid in all dimensions.
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Fact 1: If two metrics g, g0 on a closed manifold M of dimension n ⩾ 2 are non-
positively curved, have the samemarked length spectrumandAnosov geodesic flows
Φt on their unit tangent bundles T1M, T1M0, then these geodesic flows are time pre-
serving conjugate: There exists a Hölder continuous map F : T1M → T1M0 such that
Φt ◦ F = F ◦ Φt. The map F gives information on the coupling of lengths of periodic
orbits which are in a suitable sense close to each other.
Fact 2: For a closed surface S with non-positively curved metric g, one can recon-
struct the Lebesgue Liouville measure on the unit tangent bundle T1S of S from the
marked length spectrum using the fact that for surfaces, geodesics which intersect
transversely a given open geodesic segment in the universal covering S̃ of S form an
open subset of the space of all geodesics on S̃ whose measure (for the projection to
the space of geodesics on S̃ of the Liouville measure on the unit tangent bundle of S̃)
equals π times the length of the segment. As a consequence, if two such metrics g, g0
have the samemarked length spectrum, then the time preserving conjugacy between
their geodesic flows conjugates the Liouville measures for g, g0, and the volumes of
S with respect to g, g0 coincide.

Embarking from these two facts, the proof of the marked length spectrum rigid-
ity theorem for surfaces uses an ingenious and fairly elementary but purely 2-
dimensional construction.

The only global result which is known in all dimensions is the following special
case of Conjecture 1.1 HAMENSTÄDT (1999).
Theorem 2.5 (Hamenstädt). Let (M, g0) be a closed rank 1 locally symmetric manifold. If g
is another negatively curved metric on M with the same marked length spectrum as g0, then
the metrics g, g0 are strongly isometric.

The proof of this result consists of two independent steps. The first step resembles
the approach for surfaces. Namely, it is shown that whenever g, g0 are metrics on M
with Anosov geodesic flow and such that the Anosov splitting for g0 is of class C1,
and if the metrics have the same marked length spectrum, then the volumes of g, g0
coincide. In fact, a time preserving conjugacy between the geodesic flows for g, g0
maps the Lebesgue Liouville measure for g to the Lebesgue Liouville measure for
g0. Examples of metrics with C1-Anosov splitting are locally symmetric metrics or
metrics whose sectional curvature is strictly 1/4-pinched.

With this information, the rigidity statement follows from the following deep the-
orem of Besson, Courtois and Gallot BESSON, COURTOIS, and GALLOT (1995). For its for-
mulation, define the volume entropy of a negatively curved metric on a closed manifold
M to be the quantity

hvol = lim
R→∞

1
R

log vol(B(x, R))

where B(x, R) is the ball of radius R about x in the universal covering M̃ of M. The
limit is known to exist and to be independent of the basepoint x.
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