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RECENT PROGRESSES ON THE SUBCONVEXITY PROBLEM

by Philippe Michel

The subconvexity problem aims at providing non-trivial (i.e. subconvex) bounds
for central values of automorphic L-functions; the main conjecture in this area is the
Generalized Lindelöf Hypothesis which itself is a consequence of the Generalized
Riemann Hypothesis. This lecture will survey several advances that have been
made on this question during the past ten years: these include, the delta-symbol
approach of R. Munshi, the Weyl type bounds of I. Petrow and M. Young (both use
the Dirichlet L-series representation of the central values) and the works of P. Nelson
and A. Venkatesh (which use the automorphic period representations for the central
value)

1. Introduction

The Riemann zeta function is initially defined as the converging series

ζ(s) = ∑
n⩾1

1
ns = ∏

p

(
1 − 1

ps

)−1

forRe s > 1. As is well known it has an analytic continuation to C (with a simple pole
at s = 1) and satisfies a functional equation relating its values at s and at 1 − s. In
particular the most mysterious region (from the analytic viewpoint at least) to study
ζ(s) is the critical strip 0 ⩽ Re s ⩽ 1.

One hundred years ago, WEYL (1921) introduced an important technique (now
called the Weyl differencing method) to investigate the growth of the Riemann zeta
function along the edge of the critical strip, that is ζ(1 + it) for t → ∞.

During the same year, Hardy and Littlewood realized the potential of Weyl’s
method and announced strong upper bounds for ζ(s) for s inside the critical strip and
in particular along its center, the critical line Re s = 1/2: using Weyl’s method, they
obtained the upper bound

ζ(1/2 + it) = O(1 + |t|1/6). (1.1)
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This bound improved significantly on Lindelöf’s 1908 bound

ζ(1/2 + it) = O(1 + |t|1/4) (1.2)

which was a consequence of the Phragmen–Lindelöf convexity principle (itself, a con-
sequence of the maximum principle). Hardy and Littlewood did not publish their
proof in details, but it should have been as follows: by their approximate functional
equation formula for ζ(s) (published in 1927), one has for |t| ⩾ 1,

ζ(1/2 + it) = ∑
n⩽(|t|/2π)1/2

1
n1/2+it

+ π1/2−s Γ((1 − s)/2)
Γ(s/2) ∑

n⩽(|t|/2π)1/2

1
n1/2−it + O(|t|−1/4). (1.3)

In particular, bounding all the terms in this sum trivially, one recover Lindelöf’s
bound (1.2) and going beyond amounts to detect further cancellations coming from
the oscillations of the argument of n−1/2±it, n ⩽ (|t|/2π)1/2 when t is large. This is
precisely what Weyl’s method was able to capture and this eventually led to (1.1).

This so-called Weyl bound was the first example of a subconvex bound (because it
improve a bound derived from a convexity principle) for the very first L-function.

The Subconvexity Problem is the general problem of obtaining subconvex bounds for
the values of general L-functions along the critical line.

2. L-functions and the convexity bound

We will describe shortly the class of L-functions we will be considering but for the
moment we will isolate the most basic properties they satisfy (or sometimes are ex-
pected to satisfy). In any case an L-function will be a non-zero Dirichlet series

L(π, s) = ∑
n⩾1

λπ(n)
ns

associated to an arithmetic function λπ : N>0 → C, absolutely converging for
Re s > 1, coming with some additional data and enjoying (amongst others) the fol-
lowing analytic properties (see IWANIEC and KOWALSKI, 2004, §5.1)

1. Euler product. For Re s > 1, the serie L(π, s) factors into an Euler product of
local L-factors of degree ⩽ d: for Re s > 1,

L(π, s) = ∏
p

Lp(π, s), Lp(π, s) :=
d

∏
i=1

(
1 − απ,i(p)

ps

)−1,

for p ranging over the set of prime number; the απ,i(p), i = 1, · · · , d are complex
numbers satisfying |απ,i(p)| < p. In particular the arithmetic function n 7→ λπ(n)
is multiplicative: λπ(1) = 1 and λπ(mn) = λπ(m)λπ(n) if (m, n) = 1.
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2. Non-archimedean local parameters. The multiset {απ,i(p), i = 1, · · · , d} is called
the set of local parameters of L(π, s) at p and Lp(π, s) is called the local factor at
p. Moreover, there exists an integer q(π) ⩾ 1 (the arithmetic conductor of the
L-function) such that if p does not divide q(π)∣∣∣∣∣ d

∏
i=1

απ,i(p)

∣∣∣∣∣ = 1,

so that the local factor has degree d exactly. The primes p not dividing q(π) are
then called unramified.

3. Archimedean local parameters. This collection of non-archimedean local parame-
ters is completed by a multiset of complex numbers, {µπ,i, i = 1, · · · , d} sat-
isfying Re µπ,i < 1 and called the local parameters at ∞; associated to it is a cor-
responding archimedean local factor which this time, is a product of Gamma
functions

L∞(π, s) =
d

∏
i=1

ΓR(s − µπ,i).

4. Analytic continuation and functional equation: so far L(π, s) was essentially spec-
ified by a collection of local factors Lp(π, s) which could be largely random.
What qualifies it as an L-function is the following properties of global nature:
the function s 7→ L(π, s) admits meromorphic continuation to C with at most
finitely many poles. Moreover L(π, s) satisfies a functional equation of the
shape

Λ(π, s) = ε(π)Λ(π, 1 − s)

where ε(π) (the root number) is a complex number of modulus 1, and Λ(π, s)
(the completed L-function) is given by

Λ(π, s) := q(π)s/2L∞(π, s).L(π, s)

for q(π) ⩾ 1 the arithmetic conductor mentioned above. The pole of the com-
pleted L-function are located on the vertical lines Re s = 0, 1 and the sum of
their orders is bounded by ⩽ 2d and outside of these poles, Λ(π, s) has rapid
decay in any bounded vertical strip {s, A ⩽ Re s ⩽ B}.

Remark 1. In particular the dual Dirichlet series given by

L(π∨, s) := L(π, s) = ∑
n⩾1

λπ(n)
ns , Re s > 1

qualify as an L-function with q(π∨) = q(π).
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2.1. The Convexity Bound

Given L(π, s) an L-function as above; we would like to evaluate the growth of
L(π, 1/2 + it) as t → ∞. Since for Re s > 1, L(π, s) is given by a converging Euler
product, we expect and often understand “well” the analytic behaviour of L(π, s) in
this region (for instance L(π, s) has no zeros there); in particular for any ε > 0, we
have

L(π, 1 + ε + it) �d,ε 1.

By the functional equation (and the known properties of the Gamma function) we
then expect and often understand “well” the behaviour of L(π, s) whenRe s < 0; by
Stirling’s formula, the previous bound implies that for t large enough

L(π,−ε + it) �ε |t|(1+ε) d
2 .

For σ in the interval [−ε, 1 + ε], the convexity principle (see IWANIEC and KOWALSKI,
2004, Chap. 5, A.2) then implies that L(π, s) is bounded by the convex multiplicative
combination of the bounds at the extremities:

L(π, σ + it) � |t|
d
2 (1−σ+O(ε))

and for σ = 1/2 one obtains (in the s variable)

L(π, 1/2 + it) �ε |t|
d
4 +ε.

In this bound we have ignored the other quantities on which L(π, s) might de-
pend: the conductor and the spectral parameter. The above argument can be refined
to take these into account by introducing the analytic conductor of L(π, s): it is defined
(in a ad-hoc way) for s = 1/2 + it by

Q(π, s) = q(π)
d

∏
i=1

(1 + |µπ,i − it|) = q(π)q∞(π, s);

also to simplify notations we will write

Q(π) = Q(π, 1/2), q∞(π) = q∞(π, 1/2) =
d

∏
i=1

(1 + |µπ,i|).

With suitable additional assumption on L(π, s), one can obtain the

Convexity Bound. Let L(π, s) be an L-function of degree d ⩾ 1, for any ε > 0 and
s = 1

2 + it, i ∈ R, one has
L(π, s) �d,ε Q(π, s)1/4+ε. (2.1)
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We will give here an alternative proof similar to that given in the introduction:
for this we need a modern form of the approximate functional equation (2.2). By an
appropriate Mellin transformation, a contour shift and the functional equation, one
can show that (IWANIEC and KOWALSKI, 2004, Thm 5.3 & Prop. 5.4):

Approximate Functional Equation. Let L(π, s) be an L-function satisfying the analytic
properties above. There exist two smooth functions

Vs, V1−s : R>0 → C

whose derivatives have rapid decay: for any y > 0, any integer a ⩾ 0 and any A > 0 one has

yaV(a)
• (y) �d,A,a,Re s (1 + y)−A

(although these functions might depend on the archimedean parameters of π, the implicit
constants depend only on d, A and a) such that

L(π, s) = ∑
n⩾1

λπ(n)
ns Vs

( n
Q(π, s)1/2

)
+ ε(π, s) ∑

n⩾1

λπ(n)
n1−s V1−s

( n
Q(π, s)1/2

)
+ R(π, s)

(2.2)
where ε(π, s) is a complex number of modulus 1 and R(π, s) is a contribution from the poles
of Λ(π, s) and is zero if Λ(π, s) is entire.

Proof of the convexity bound. We sketch the proof (in a slightly stronger form) as-
suming that L(π, s) is entire and that its local parameters satisfy the following
Ramanujan–Peterson type bound

∀p, i = 1, . . . , d, |απ,i(p)| ⩽ 1.

In particular the coefficients λπ(n) are bounded by

|λπ(n)| ⩽ τd(n) = ∑
n1.··· .nd=n

1

the d-th order divisor function. By the approximate functional equation we have
taking A ⩾ 2

L(π, s) �d,A ∑
n⩾1

τd(n)
n1/2

(
1 +

n
Q(π, s)1/2

)−A �d Q(π, s)1/4 logd−1(Q(π, s)).

Remark 2. While the convexity bound is trivial to prove in favourable cases such that
this one here, it is not obvious in general (see MOLTENI, 2002 and BRUMLEY, 2004).
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