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FINITE TIME BLOW UP FOR THE COMPRESSIBLE FLUIDS AND FOR
THE ENERGY SUPERCRITICAL DEFOCUSING NONLINEAR

SCHRÖDINGER EQUATION
[after Frank Merle, Pierre Raphaël, Igor Rodnianski and Jérémie Szeftel]

by Galina Perelman

Introduction

The problem of finite time breakdown of solutions starting from smooth initial data is
one of the central problems in the theory of nonlinear evolution PDEs. In this talk we
will address this problem in the context of the following two models: the isentropic
compressible Navier-Stokes equation and its inviscid Euler limit on the one hand and
the defocusing nonlinear Schrödinger equation on the other hand. The aim of the talk
is to report on breakthrough progress recently made in a series of works of F. Merle,
P. Raphaël, I. Rodnianski and J. Szeftel who showed that both models in a suitable
range of parameters, admit a finite time blow up regime governed by appropriate
self-similar solutions of the underlying Euler equation. We start by briefly overview-
ing the history of the blow up problem for each of these models and explaining the
connection between them.

The motion of isentropic compressible viscous fluids in Rd is governed by the
compressible Navier-Stokes equations:

∂tρ + div(ρv) = 0

ρ∂tv + ρv · ∇v +∇P(ρ) = µ∆v + µ′∇div v

(ρ, v)|t=0 = (ρ0, v0),

(1)

where v : R+ ×Rd → Rd is the velocity field, ρ : R+ ×Rd → R+ is the density of the
fluid, µ, µ′ are viscosity coefficients satisfying µ ⩾ 0, µ′ ⩾

(
1 − 2

d
)

µ and P = P(ρ) is
the pressure that we will assume to be given by:

P(ρ) =
γ − 1

γ
ργ, γ > 1. (2)
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In the inviscid limit µ = µ′ = 0 one obtains the compressible Euler equations:
∂tρ + div(ρv) = 0

ρ∂tv + ρv · ∇v +∇P(ρ) = 0

(ρ, v)|t=0 = (ρ0, v0).

(3)

We will be interested in solutions (ρ, v) that decay to zero at spatial infinity(1)
keeping the density strictly positive:

lim
|x|→∞

(ρ(t, x), v(t, x)) = 0, ρ(t, x) > 0, (4)

and will focus mainly on the 3d case.

Solutions to (1) satisfy formally the mass and momentum conservation law∫
Rd

ρ(t)dx =
∫

Rd
ρ0dx,

∫
Rd

ρ(t)v(t)dx =
∫

Rd
ρ0v0dx,

and the energy identity∫
Rd

(
1
2

ρ(t)|v(t)|2 + 1
γ

ργ(t)
)

dx +
∫ t

0
(µ‖∇v(s)‖2

L2(Rd)
+ µ′‖div v(s)‖2

L2(Rd)
)ds

=
∫

Rd

(
1
2

ρ0|v0|2 +
1
γ

ρ
γ
0

)
dx.

Note also that the Navier-Stokes equation (1) is preserved by the scaling

(ρ(t, x), v(t, x)) 7→ (λ
2(r−1)

γ−1 ρ(λrt, λx), λr−1v(λrt, λx)), λ > 0, (5)

with r = 2γ
γ+1 . The Euler equation (3) is invariant with respect to transformations (5)

for any r.

Smooth, suitably decaying initial data (ρ0, u0) with strictly positive density are
known to give rise to unique local in time strong solutions to (1), (3) (see Section 1
for the precise statements and references), that however do not always exist for all
times, the conservation laws being far too weak to prevent the formation of singu-
larities. Finite time breakdown of strong solutions to (1) starting from initial data
with non-vanishing density, non-vanishing momentum and with suitable decay at
infinity was shown by ROZANOVA (2008) in the case of d ⩾ 3, γ ⩾ 2d

d+2 , see also
XIN (1998) where the case of non-barotropic compressible Navier-Stokes equations
with compactly supported initial data was considered. For the 3d Euler equation (3)
(1)For the Euler equation the behavior at infinity is less important because of the domain of dependence

principle.
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the corresponding results go back to the work of SIDERIS (1985) who exhibited an
open set of smooth initial data corresponding to compactly supported perturbations
of constant states, including arbitrary small disturbances, that lead to classical solu-
tions with a finite lifespan. However the proofs of ROZANOVA (2008), SIDERIS (1985),
and XIN (1998), being based on convexity type arguments give no information on the
nature of the singularity that develops.

For the compressible Euler equations, the typical singularity (at least for “small”
initial data) is a shock(2). In dimension one, the fact that initially smooth solutions
can form shock singularities even when the initial data are small and compactly sup-
ported perturbations of a constant state is known since the works of Riemann. We
refer to the monographs DAFERMOS (2010) and MAJDA (1984) for the details and ref-
erences of the 1d theory which by now is quite complete. An important advance
in understanding of multidimensional shock formation was achieved by ALINHAC
(1999, 2001), who considered a general class of quasilinear wave equations in dimen-
sions two and three, including the irrotational compressible Euler equations, and
showed that the failure of the Klainerman null condition in the equation leads for
non-degenerate small compactly supported initial data to finite time shock forma-
tion caused by the crossing of characteristics (see also the precursor work of JOHN,
1985). While giving a detailed description of the solutions up to the first singu-
lar time, the results of ALINHAC (1999, 2001) leave open a more general question of
the maximal smooth development of the initial data. For the 3d relativistic Euler
equations, the latter was studied in the seminal work of CHRISTODOULOU (2007), see
also CHRISTODOULOU and MIAO (2014) for the non-relativistic case. The results of
CHRISTODOULOU (2007) and CHRISTODOULOU and MIAO (2014) cover the case of small
compactly supported initial perturbations of constant state solutions, showing shock
formation in irrotational space-time regions and giving a precise description of the
corresponding portion of the boundary of the maximal classical development of the
data. We also refer to the works of BUCKMASTER, DRIVAS, et al. (2021), BUCKMASTER,
SHKOLLER, and VICOL (2019a,b, 2020), CHRISTODOULOU (2019), and LUK and SPECK
(2018, 2021) for further developments in the study of shock formation for the com-
pressible Euler equations, including the results going beyond the irrotational and
isentropic regimes.

(2)Shock singularity means that the velocity and density remain bounded while some of their first order
derivatives blow up.
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Shocks are not the only possible singularities for (3). Stronger singularities with
both the density and the velocity blowing up, may occur as well. It has been known
since the works of GUDERLEY (1942) and SEDOV (1959) that (3) has a family of spheri-
cally symmetric self-similar solutions

ρ(t, x) =
1

(T − t)
2(r−1)
r(γ−1)

R

(
x

(T − t)
1
r

)
, v(t, x) =

1

(T − t)1− 1
r
V

(
x

(T − t)
1
r

)
. (6)

Although typically these solutions are either non global or non-smooth (that is
the profiles R and V are non-smooth), MERLE, RAPHAËL, RODNIANSKI, and SZEFTEL
(2022b) proved that in a suitable range of parameter γ, and for a suitable sequence
of blow up rates r, (3) admits global, decaying at infinity, C∞ self-similar solutions.
Furthermore, MERLE, RAPHAËL, RODNIANSKI, and SZEFTEL (2022c) showed that these
C∞ self-similar solutions can be used as a leading order approximation to generate
finite energy(3) blow up solutions for both the Euler equation (3) and the Navier-
Stokes equation (1). For the Navier-Stokes equation this gives the first result with
a complete description of singularity formation. The C∞ smoothness of the self-
similar profiles plays a crucial role in the analysis of MERLE, RAPHAËL, RODNIANSKI,
and SZEFTEL (2022c).

What is evenmore remarkable is that the above self-similar eulerian solutions can
be also used to produce finite time blow up solutions for the defocusing nonlinear
Schrödinger equation (NLS):{

iut = −∆u + |u|2pu, x ∈ Rd, p > 0

u|t=0 = u0 ∈ Hs(Rd).
(7)

The term “defocusing” refers to the sign “+” before the nonlinearity.

The NLS equation (7) is invariant with respect to the scaling:

u(t, x) 7→ λ
1
p u(λ2t, λx), λ > 0, (8)

which preserves the homogeneous Sobolev norm ‖u0‖Ḣsc (Rd) with sc =
d
2 − 1

p .

Local well-posedness of (7) is classical and goes back to the works of GINIBRE and
VELO (1979). The Cauchy problem (7) is known to be locally well-posed in Hs for(4)
s ⩾ max{0, sc} (see e.g. CAZENAVE (2003) and CAZENAVE and WEISSLER (1990) and
(3)Although decaying at infinity, these self-similar solutions have infinite energy, see Section 3.
(4)In the case when p is not an integer one has also to assume that s is compatible with the smoothness

of the nonlinear term.
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references therein). For s ⩾ max{1, sc}, the solutions satisfy on their lifespan the
mass and energy conservation laws:

M(u(t)) ≡
∫

Rd
|u(t, x)|2dx = M(u0),

E(u(t)) ≡
∫

Rd

(
|∇u(t, x)|2 + 1

p + 1
|u(t, x)|2p+2

)
dx = E(u0).

In the case s > sc the lifespan of the solutions admits a lower bound depending
only on the Hs norm of initial data(5), which in a standard way, implies that the so-
lution of (7) is either global or its Hs norm becomes unbounded in finite time. By
the mass and energy conservation, this ensures global well-posedness in Hs, s ⩾ 1,
in the energy subcritical case sc < 1. Global well-posedness is known to persist in
the energy critical case sc = 1 (p = 2

d−2 , d ⩾ 3). This was proved (after considerable
efforts) by BOURGAIN (1999), GRILLAKIS (2000), TAO (2005) for spherically symmetric
initial data, and by COLLIANDER et al. (2008), RYCKMAN and VISAN (2007), and VISAN
(2007) for general data. We also refer to the seminal paper of KENIG andMERLE (2006)
where the powerful technology of concentration compactness/rigidity method was
introduced.

The question whether finite time blow up occurs in the energy supercritical case
sc > 1 (p > 2

d−2 , d ⩾ 3) remained completely open for long time. On the one
hand, numerical simulations as well as the global well-posedness results for the log-
supercritical equations (see e.g. TAO, 2007), the nonexistence of soliton like solutions
and the expected nonexistence of the self-similar blow up supported the hypothe-
sis of global well-posedness. On the other hand, TAO (2018) exhibited examples of
energy supercritical defocusing NLS systems for which finite time blow up does hap-
pen.

A decisive breakthrough has been achieved by MERLE, RAPHAËL, RODNIANSKI, and
SZEFTEL (2022a) who considered the energy supercritical NLS

iut = −∆u + |u|2pu, x ∈ Rd, p >
2

d − 2
(9)

in dimensions 5 ⩽ d ⩽ 9 and showed that there exist, for certain choices of p, C∞ well
localized initial data leading to solutions blowing up in finite type. The construction
of MERLE, RAPHAËL, RODNIANSKI, and SZEFTEL (2022a) relies on the hydrodynamic for-
mulation of the NLS equation (9) arising via the Madelung transform u = ρeiφ that
allows to view (9), at least in some regimes, as a perturbation of the compressible
Euler equation (3) and to use the C∞ self-similar solutions of the latter to produce
finite time blow up solutions to (9).
(5)In fact, one has a slightly stronger result including the persistence of regularity: if u0 ∈ Hs′ with s′ > s,

then the solution stays in Hs′ as long as it exists in Hs.
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