
Séminaire BOURBAKI Juin 2022
73e année, 2021–2022, no 1196, p. 547 à 581
doi: 10.24033/ast.1197

RECENT PROGRESS ON BOUNDS FOR SETS WITH NO THREE TERMS IN
ARITHMETIC PROGRESSION

[after Bloom and Sisask, Croot, Lev, and Pach, and Ellenberg and Gijswijt]

by Sarah Peluse

Introduction

Van derWaerden’s theorem (VAN DERWAERDEN, 1927), one of the foundational results
of Ramsey theory, states that if the integers are partitioned into finitely many sets,
then one of these sets must contain nontrivial arithmetic progressions,

x, x + y, . . . , x + (k − 1)y, (1)

of all lengths. Here nontrivial means that y ̸= 0 in (1). Motivated by van der
Waerden’s result, ERDŐS and TURÁN (1936) conjectured that every subset of the inte-
gers with positive upper density must contain arithmetic progressions of all lengths,
or, equivalently, that any subset A of the first N integers containing no k-term arith-
metic progressions satisfies |A| = ok(N). Thus, van der Waerden’s theorem should
hold because, in any finite partition of the integers, some part must have positive
density.

Since any two distinct integers form a two-term arithmetic progression, the first
nontrivial case of Erdős and Turán’s conjecture is when k = 3. Define r3(N) to be the
size of the largest subset of the first N integers containing no nontrivial arithmetic
progressions, so that the k = 3 case of the conjecture is equivalent to r3(N) = o(N).
Thiswas first proven byROTH (1953), who even produced an explicit bound for r3(N),
using a variant of the circle method.

Theorem 0.1 (Roth, 1953). We have

r3(N) = O
(

N
log log N

)
.
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SZEMERÉDI (1975) proved Erdős and Turán’s conjecture in full generality via a
purely combinatorial argument in which he introduced his famous regularity lemma
for graphs, now a fundamental tool in graph theory. There are now many proofs
of Szemerédi’s Theorem, most notably Furstenberg’s proof using ergodic theory
(FURSTENBERG, 1977), in which he introduced his famous correspondence principle
and launched the field of ergodic Ramsey theory, and Gowers’s proof of explicit
quantitative bounds in Szemerédi’s theorem (GOWERS, 1998, 2001), which initiated
the study of higher-order Fourier analysis.

Wewill, for the remainder of this exposition, mostly restrict our discussion to sets
lacking three-term arithmetic progressions. It is now a central open problem in ad-
ditive combinatorics to determine the best possible bounds in Roth’s theorem, i.e., to
determine the size of the largest subset of the first N integers containing no nontriv-
ial three-term arithmetic progressions. This problem has catalyzed many important
developments in additive and extremal combinatorics, spurring the invention of tech-
niques that have had wide-ranging applications.

Beginning around the 1940’s, Erdős repeatedly posed the conjecture that any sub-
set S of the natural numbers satisfying

∑
n∈S

1
n
= ∞

must contain arithmetic progressions of all lengths. It was also a very old, folklore
conjecture that the primes contain arbitrarily long arithmetic progressions, and Erdős
was interested in whether the primes (whose sum of reciprocals diverges) must
contain arbitrarily long arithmetic progressions simply because they are sufficiently
dense. This folklore conjecture is now known to be true thanks to celebrated work of
GREEN and TAO (2008), who leveraged the pseudorandomness of the primes in their
proof. Upper density and the divergence rate of ∑n∈S

1
n are not quite equivalent no-

tions of size, but, by partial summation, a bound of the quality Ok

(
N

(log N)1+c

)
, where

c > 0, for the size of the largest subset of the first N integers containing no k-term
arithmetic progressions would be sufficient to prove Erdős’s conjecture. Over the
past few decades, a sequence of works had improved Roth’s bound right up to the
O
(

N
log N

)
barrier. The table below summarizes these developments, where the sec-

ond column lists bounds for the order of magnitude of r3(N) obtained by the authors
in the first column.
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ROTH (1953) N
log log N

HEATH-BROWN (1987) and SZEMERÉDI (1990) N
(log N)c

BOURGAIN (1999) N
(log N)1/2−o(1)

BOURGAIN (2008) N
(log N)2/3−o(1)

SANDERS (2012) N
(log N)3/4−o(1)

SANDERS (2011) N(log log N)6

log N

BLOOM (2016) N(log log N)4

log N

SCHOEN (2021) N(log log N)3+o(1)

log N

Here the c appearing in the second row is a small positive constant, the −o(1) in
the exponent of log N in the third, fourth, and fifth rows hides bounded powers of
log log N in the numerator, and the o(1) in the exponent of log log N in the last row
hides a bounded power of log log log N.

Schoen’s record upper bound for r3(N) appeared on the arXiv in May of 2020.
Two months later, BLOOM and SISASK (2020) announced that they had finally broken
through theO

(
N

log N

)
barrier in Roth’s theorem, thus proving the first nontrivial case

of Erdős’s conjecture.

Theorem 0.2 (Bloom and SisasK, 2020). There exists an absolute constant c > 0 such that

r3(N) = O
(

N
(log N)1+c

)
.

Therefore, any set S of natural numbers satisfying ∑n∈S
1
n = ∞ must contain

a three-term arithmetic progression. Such sets include positive density subsets of
the prime numbers, so that Theorem 0.2 also implies Green’s Roth theorem in the
primes (GREEN, 2005b).

We will now briefly discuss the known lower bounds for r3(N). By consider-
ing the integers whose ternary expansion contains no twos, it is easy to see that
r3(N) = Ω(Nlog 2/ log 3). SALEM and SPENCER (1942) constructed subsets of the first
N integers of density exp(− log N/ log log N) lacking three-term arithmetic progres-
sions, showing that the true order of magnitude of r3(N) is larger than N1−ε for
any fixed ε > 0. For this reason, sets free of three-term arithmetic progressions are
sometimes called Salem–Spencer sets. A construction of BEHREND (1946) shows that
r3(N) = Ω(N/ exp(C

√
log N)) for some absolute constant C > 0, which is still es-

sentially the best known lower bound.
There is, then, the natural question of whether the true order of magnitude of

r3(N) is closer to Behrend’s lower bound or the upper bound of Bloom and Sisask.
SCHOEN and SISASK (2016) have proven bounds of the formO

(
N/ exp(C(log N)1/7)

)
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for subsets of the first N integers having no nontrivial solutions to the equation
x + y + z = 3w. Since three-term arithmetic progressions are solutions to the equa-
tion x + y = 2z, it is reasonable to guess, by analogy, that r3(N) should also be on the
order of N/ exp(C(log N)c) for some absolute constants C, c > 0. Experts have, for
a while, thought that a bound of this form is closer to the truth than, say, N

(log N)100 ,
though it appears no one was brave enough to write down a conjecture. Bloom and
Sisask have finally conjectured this in their paper, and they do not just reason by
analogy–several of the steps of their proof are efficient enough to produce a bound
of the form O (N/ exp(C(log N)c)).

When G is a finite abelian group of odd order, it is also natural to define r3(G) to
be the size of the largest subset of G containing no nontrivial three-term arithmetic
progressions, and to ask for upper and lower bounds on r3(G). Obtaining bounds
for r3(Z/MZ) as M tends to infinity is essentially equivalent to obtaining bounds in
Roth’s theorem in the integer setting. Another family of groups of great interest are
the finite dimensional F3-vector spaces. Subsets of Fn

3 lacking three-term arithmetic
progressions are called cap-sets, and the problem of bounding r3(Fn

3 ), known as the
cap-set problem, has an old history. Nontrivial three-term arithmetic progressions are
exactly the lines in Fn

3 , and, more generally, sets (in finite, real, or complex affine or
projective space) with no-three-on-a-line are popular objects of study in discrete and
combinatorial geometry.

BROWN and BUHLER (1982) were the first to prove r3(Fn
3 ) = o(3n). This fact, like

r3(N) = o(N), is also a straightforward consequence of the triangle removal lemma,
which states that, for every ε > 0, there exists a δ > 0 such that any graph on M
vertices containing δM3 triangles can be made triangle-free by removing at most εM2

edges. This was observed by FRANKL, GRAHAM, and RÖDL (1987), who then asked
whether there exists a positive constant c < 3 such that r3(Fn

3 ) = O(cn). ALON and
DUBINER (1993) also posed this question. By adapting Roth’s argument to the setting
of F3-vector spaces, MESHULAM (1995) proved the first explicit bounds for the size of
cap-sets.

Theorem 0.3 (Meshulam, 1995). We have

r3(Fn
3 ) = O

(
3n

n

)
.

The quantity 3n, which is the size of Fn
3 , is analogous to the length N of the interval

{1, . . . , N} in Roth’s theorem. Thus, Meshulam’s result corresponds to a bound of the
strength O

(
N

log N

)
in Roth’s theorem.

The family of vector spaces (Fn
3 )

∞
n=1 can serve as a useful testing ground for ideas

and techniques to improve Roth’s theorem in the integer setting, sincemany technical
aspects are greatly simplifiedwhenworking in Fn

3 . The surveys byGREEN (2005a) and
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WOLF (2015) give nice overviews of this philosophy. The setting of vector spaces over
finite fields is often referred to in additive combinatorics as the “finite field model
setting”, and we will also use this terminology. In breakthrough work, BATEMAN and
KATZ (2012) proved that r3(Fn

3 ) = O
(

3n

n1+c

)
for some absolute constant c > 0, and

their insights obtained in the finite field model setting were crucial in the work of
BLOOM and SISASK (2020) in the integer setting.

Up until a few years ago, all quantitative improvements to the arguments of Roth
andMeshulamwere (increasinglymore difficult and technical) refinements of Roth’s
original Fourier-analytic argument. In 2016, CROOT, LEV, and PACH (2017) introduced
a new version of the polynomial method, which they used to prove that any subset of
(Z/4Z)n lacking three-term arithmetic progressions has cardinality at mostO(3.61n),
greatly improving upon the previous best bound of O

(
4n

n(log n)c

)
due to SANDERS

(2009). Very shortly after, ELLENBERG and GIJSWIJT (2017) adapted the method of
Croot, Lev, and Pach to prove a power-saving bound for the size of cap-sets, thus
answering the question of Frankl, Graham, and Rödl.

Theorem 0.4 (EllenbeRg and Gijswijt, 2017). We have

r3(Fn
3 ) = O(2.756n).

The arguments of Croot–Lev–Pach and Ellenberg–Gijswijt are completely disjoint
from the prior Fourier-analytic arguments, and constitute yet another instance of
the polynomial method producing an elegant solution to a famous problem, joining
(among other works) Dvir’s solution of the finite field Kakeya problem (DVIR, 2009)
and the work of Guth and Katz on the joints problem (GUTH and KATZ, 2010) and
the Erdős distinct distances problem (GUTH and KATZ, 2015). EDEL (2004) has con-
structed cap-sets in Fn

3 of size Ω(2.217n), so there is still an exponential gap between
the best known upper and lower bounds for r3(Fn

3 ).
In this exposition, we will survey the methods going into the two breakthrough

results stated in Theorems 0.2 and 0.4. We will begin by introducing Roth’s basic
method in the finite field model and integer settings in Section 1, and then give an
overview of most of the ingredients in Bloom and Sisask’s argument in Section 2
before discussing their proof, with a focus on spectral boosting, in Section 3. We will
then present a full proof of Theorem 0.4 in Section 4.
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