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LOCAL GRADIENT ESTIMATES
OF p-HARMONIC FUNCTIONS, 1/H-FLOW,

AND AN ENTROPY FORMULA

 B KOTSCHWAR  L NI

A. – In the first part of this paper, we prove local interior and boundary gradient esti-
mates for p-harmonic functions on general Riemannian manifolds. With these estimates, following the
strategy in recent work of R. Moser, we prove an existence theorem for weak solutions to the level set
formulation of the 1/H (inverse mean curvature) flow for hypersurfaces in ambient manifolds satis-
fying a sharp volume growth assumption. In the second part of this paper, we consider two parabolic
analogues of the p-harmonic equation and prove sharp Li-Yau type gradient estimates for positive so-
lutions to these equations on manifolds of nonnegative Ricci curvature. For one of these equations, we
also prove an entropy monotonicity formula generalizing an earlier such formula of the second author
for the linear heat equation. As an application of this formula, we show that a complete Riemannian
manifold with nonnegative Ricci curvature and sharp Lp-logarithmic Sobolev inequality must be iso-
metric to Euclidean space.

R. – Dans la première partie de cet article, nous établissons des estimées locales de gradient
pour les fonctions p-harmoniques à l’intérieur et au bord, sur les variétés riemanniennes générales.
Grâce à ces estimations et suivant une idée récente de R. Moser, nous obtenons un théorème d’exis-
tence de solutions faibles au sens de la formulation d’ensemble de niveau pour le flot 1/H (inverse de
la courbure moyenne) des hypersurfaces dans les variétés ambiantes ayant la propriété de la croissance
optimale du volume. Dans la deuxième partie, nous considérons deux types d’équations paraboliques
pour les fonctions p-harmoniques et nous établissons une estimation optimale du type de Li-Yau pour
les solutions positives pour ces équations sur les variétés à courbure de Ricci non-négative. Nous mon-
trons aussi une formule de monotonie des entropies associées à ces équations. Cette formule généralise
un résultat antérieur du deuxième auteur pour l’équation de la chaleur linéaire. Comme application,
nous montrons que toute variété riemannienne complète à courbure de Ricci positive ou nulle et ad-
mettant une inégalité logarithmique Lp optimale est isométrique à l’espace euclidien.
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1. Introduction

Recently, in [26], an interesting connection between the p-harmonic functions and the 1/H

hypersurface flow (also called the inverse mean curvature flow) was established. Let v be a
positive p-harmonic function, i.e., a function satisfying

(1.1) div
(
|∇v|p−2∇v

)
= 0,

and let u + −(p− 1) log v. It is easy to see that u satisfies

(1.2) div
(
|∇u|p−2∇u

)
= |∇u|p.

The objective in [26] is to obtain a weak solution to the 1/H flow in the level-set formu-
lation of [21] on a co-compact subdomain Ω of Rn. Where it is sufficiently regular, such a
solution u will satisfy

(1.3) div

Å ∇u
|∇u|

ã
= |∇u|,

that is, (1.2) with p = 1. Moser’s strategy in [26] is to produce weak solutions to (1.3) as limits
of solutions u(p) to (1.2) as p↘ 1. He obtains the u(p) via the above correspondence by using
explicit barriers to first solve (1.1) with appropriate Dirichlet boundary conditions.

The key ingredient in the proof of the convergence and, consequently, to the success of
this strategy, is a uniform gradient estimate on the u = u(p). The estimate is aided by the
following observation. If

f + |∇u|2 + (p− 1)2 |∇v|2

v2
,

then, expressed in terms of f , (1.2) has the equivalent form

(1.4) fp/2−1∆u+
(p

2
− 1
)
fp/2−2〈∇f,∇u〉 = fp/2.

Using this equation, the gradient estimate in [26] follows from a boundary estimate, which
in turn is derived from aC0 estimate by way of explicit barriers, certain integral estimates on
|∇v|, and a Harnack inequality for p-harmonic functions on Euclidean spaces. The construc-
tion of the barriers in particular relies on the underlying Euclidean structure of the manifold.
Some precedence for both the regularization procedure and the reduction of the convergence
argument to a uniform gradient estimate can be found, for example, in [14], in another con-
text.

In the first part of this paper, we derive interior and boundary gradient estimates on a gen-
eral Riemannian manifold (M, g) via the gradient estimate technique of [25, 5] and use it to
establish an existence result for the 1/H-flow on a class of complete Riemannian manifolds.
A new feature of our derivation of the local estimate is a nonlinear Bochner type formula
relating the nonlinear operator with its linearization.

We first start with an interior/local estimate for positive p-harmonic functions, which is of
independent interest.

T 1.1. – Assume that v is a positive p-harmonic function on the ballB(x0, R), and
that on the ball B(x0, R) the sectional curvature of (M, g), KM ≥ −K2. Then for any ε > 0,

(1.5) sup
B(x0,

R
2 )

|∇u|2 ≤ 20(n− 1)

R2(1− ε)

Ç
cp,n +

(n− 1)b2p,n
8ε

å
+ C(n,K, p,R, ε)
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where

bp,n =

Å
2(p− 1)

n− 1
− 2

ã
,

cp,n =

Å
2(p/2− 1)2

n− 1
+

(p− 2)p

2

ã
−

+
((p

2
+ 1
)

max{p− 1, 1}
)
,

C(n,K, p,R, ε) =
(n− 1)2

1− ε
K2 +

40(n+ p− 2)(n− 1)

1− ε
1 +KR

R2

+
20 max{p− 1, 1}(n− 1)

(1− ε)R2
.

Note that bp,n, cp,n and C(n,K, p,R, ε) all stay finite as p→ 1. Hence Theorem 1.1 effec-
tively gives an estimate for the gradient of the solution to 1/H-flow. Also, if v is defined glob-
ally, by taking R → ∞, then ε → 0, Theorem 1.1 implies that for any positive p-harmonic
function v, u = −(p− 1) log v satisfies

(1.6) |∇u|2 ≤ (n− 1)2K2.

The constant (n − 1)2 is sharp in light of the results of [24, 30] for the case p = 2. From
the proof it is evident that when p = 2, one can relax the assumption KM ≥ −K2 to
Ric ≥ −(n− 1)K2. A direct consequence of this is that if (M, g) is a complete manifold
with nonnegative sectional curvature, then any positive p-harmonic function must be a
constant. In fact, using the gradient technique of this paper, one can prove that any positive
p-harmonic function on a manifold with nonnegative Ricci curvature and a sectional curva-
ture lower bound must be a constant. Indeed, this result can be obtained by only assuming
that the manifold has the so-called volume doubling property and satisfies a Poincaré type
inequality (see, for example, [20] as well as Section 4 for more details). Hence it holds in
particular on any Riemannian manifold with nonnegative Ricci curvature. On the other
hand, it is not clear whether one can obtain an estimate on |∇u|2 such as (1.6) under the
weaker assumption of a Ricci curvature lower bound.

With the help of the interior gradient estimate, by constructing suitable (local) barrier
functions we can establish the following boundary estimate:

For every ε > 0, there exists p0 = p(ε) > 1 such that if u satisfies equation (1.2) on Ω for
some 1 < p ≤ p0, then we have the estimate

(1.7) |∇u| ≤ H+ + ε

where H denotes the mean curvature of ∂Ω and H+(x) = max {H(x), 0}.

A similar boundary estimate was first proved in [21] for solutions to a different equation
approximating (1.3). Our method is a modification of theirs.

With the help of the interior and boundary estimates above, and following the general
scheme of [26], one can prove the existence of a proper solution (please see Section 4 for the
definition) for a class of Riemannian manifolds which includes the asymptotically Euclidean
manifolds considered in [21]. The following is a special case implied by our general existence
theorem.
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T 1.2. – Let M be a complete Riemannian manifold such that its sectional curva-
ture KM (x) ≥ −k(r(x)) for some nonincreasing function k(t) with

∫∞
0
tk(t) dt < ∞. Let Ω

be an end of M . Assume that for some p0 > 1,∫ ∞
1

Å
t

V (Ω ∩B(o, t))

ã1/(p0−1)

dt <∞

and

lim
r→∞

sup
2r≤t<∞

t

V (Ω ∩B(o, t))
= 0.

Then (1.3) has a proper weak solution u with limx→∞ |∇u|(x) = 0.

The volume growth conditions in the theorem are optimal for the existence of proper so-
lutions. This is shown in Section 4.

After the uniform gradient estimate, the key of the proof of the existence theorem is to
construct certain bounded p-harmonic functions and obtain effective C0-estimates of such
p-harmonic functions at infinity which hold up as p → 1. The estimate is somewhat deli-
cate as we need to ensure that the limit as p → 1 is a nonconstant function which tends to
+∞ at the spatial infinity. Here we rely crucially on an early work of Holopainen [20]. One
may expect more general existence results, for example, for manifolds with a Laplacian whose
L2-spectrum has a positive lower bound [24]. However, it seems that perhaps more refined
estimates may be needed.

In the second part of the paper, beginning in Section 5, we consider some nonlinear
parabolic equations motivated by Theorem 1.1. First, we prove sharp gradient estimates
of Li-Yau type for two nonlinear parabolic equations associated with (1.1). Both estimates
proved are sharp in the case that M has nonnegative Ricci curvature and provide nonlinear
generalizations of Li-Yau’s estimate for the heat equation. One of these estimates, in the
case M = Rn, was obtained earlier in [11, 12] (see also [29]) in the study of the regularity of
nonnegative weak solutions. We refer the readers to Section 5 and 6 for the more detailed
discussions on these results.

A little surprisingly, we also obtain the following entropy formula for a class of nonlinear
parabolic equations, generalizing the earlier formula for the linear heat equation in [27].

T 1.3. – Let (M, g) be a complete Riemannian manifold. For any p > 1, let v be
a positive solution to the equation

(1.8)
∂vp−1

∂t
= (p− 1)p−1 div(|∇v|p−2∇v)

satisfying
∫
vp−1dµ = 1. Then

d

dt
Wp(v, t) = −tp

∫
M

Ç∣∣∣∣fp/2−1∇i∇ju−
1

tp
aij

∣∣∣∣2
A

+ fp−2Rijuiuj

å
vp−1 dµ

with u = −(p − 1) log v, f = |∇u|2, aij = gij − p−2
p−1

vivj
|∇v|2 , |T |2A = AikAjlTijTkl for any

2-tensor T where (Aij) is the inverse of (aij). The entropy

Wp(v, t) =

∫
M

(t|∇ϕ|p + ϕ− n)vp−1 dµ
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