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TORSION CLASSES IN THE EQUIVARIANT
CHOW GROUPS OF ALGEBRAIC TORI

BY FEDERICO SCAVIA

ABSTRACT. — We give an example of an algebraic torus T such that the group CH? (BT )1ors 1S
non-trivial. This answers a question of Blinstein and Merkurjev.

RESUME. — On donne un exemple d’un tore algébrique T tel que le groupe CH? (BT )tors €st non
nul. Ceci répond a une question de Blinstein et Merkurjev.

1. Introduction

Let F be a field, and let G be a linear algebraic group over F. Leti > 0 be an integer, let
V be a linear representation of G over F, and assume that there exists a G-invariant open
subscheme U of V such that U is the total space of a G-torsor U — U/G and V \ U has
codimension at least i 4+ 1 in V. Following B. Totaro [10, Definition 1.2], we define

CH!(BG) := CH' (U/G).

This definition does not depend on the choice of V and U; see [10, Theorem 1.1]. The graded
abelian group CH*(BG) := ;. CH! (BG) has the structure of a commutative ring with
identity. -

If T is a split F-torus, and T is the character lattice of T, then there is a canonical
isomorphism Sym(f") ~ CH*(BT). Thus, if T has rank n, CH*(BT) is a polynomial ring
with n generators in degree 1, and in particular its underlying additive group is torsion-free.

When G is a finite group, a lot of work on CH*(BG) has been carried out by a number of
authors, for example N. Yagita [15], P. Guillot [6] and Totaro. Totaro’s book [11] is devoted
to the study of CH*(BG) and to its relation to the group cohomology of G.

When G is a split reductive group, there is an extensive literature dealing with compu-
tations of CH*(BG). For instance, the ring CH* (BG) has been computed for G = GL,,
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572 F. SCAVIA

SL,, Sp,, by Totaro [10], for G = O,, SO2,+1 by Totaro and R. Pandharipande [10] [9],
for G = SO,, by R. Field [4], for G = G, by N. Yagita [14], for G = PGL3 by G. Vezzosi
[12], and for G = PGL, (additively) by A. Vistoli [13].

Let F be a separable closure of F, let G := Gal(F;/F) be the absolute Galois group of F.
If X is an F-scheme, we define X5 := X xp F;. When G is not assumed to be split, a lot less
is known about CH* (BG). Assume that G = T is an F-torus, not necessarily split. Then we
have canonical isomorphisms

CH'(BT) ~ CH'(BTy)9 ~ (T})°.
The natural homomorphism
CH2(BT) — CH?(BT,)¢

is not surjective in general; many examples can be obtained from [1, Lemma 4.2, Theorem 4.10,
Theorem 4.13].

When X is a smooth variety over F, the natural map
CH?(X) — CH2(X,)¢

is in general neither injective nor surjective, that is, Galois descent for codimension 2 cycles
may fail. It is a difficult and interesting problem to study the kernel and cokernel of the
previous map, even for special families of varieties X, and an extensive literature is devoted
to it.
Since CH?(BTy) is torsion-free, a norm argument shows that
Ker(CH?(BT) — CH?(BTy)9) = CH2(BT )ors.

where CH?(BT ) ors is the torsion subgroup of CH?(BT). The group CH?(BT)ors plays a
prominent role in work of S. Blinstein and A. Merkurjev, where it appears as the first term of
the exact sequence of [1, Theorem B]. In [1, Theorem 4.7], Blinstein and Merkurjev showed
that CH2(B T )tors 1s finite and 2 - CHZ(B T)tors = 0. They posed the following question.

QuEsTIoN 1.1 ([1, Question 4.9]). — Is CH2(BT )ors trivial for every torus T'?
Merkurjev studied this question further in [8]. He showed that CH?(BT)ors = 0 in many
cases, for example:

— when BT is 2-retract rational, by [8, Corollary 5.5];

— when the 2-Sylow subgroups of the splitting group of T are cyclic or Klein four-groups,
by [8, Proposition 2.1(2), Example 4.3, and Corollary 5.3];

— when char F = 2, by [8, Corollary 5.5];

— when T = Rg/r(Gm)/Gm and E/F is a finite Galois extension, by [8, Example 4.2,
Corollary 5.3].

The purpose of this paper is to show that Question 1.1 has a negative answer.

THEOREM 1.2. — There exist a field F and an F-torus T such that CHZ(BT)t(,rS is not
trivial.
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In our example, the splitting group G of T is a 2-Sylow subgroup of the Suzuki group
Sz(8), and F = Q(V)?, where V is a faithful representation of G over Q. The group G has
order 64; no counterexample with a splitting group of smaller order can be detected using
our method. The torus T has dimension 2'2 —27 + 1 = (26 — 1)?> = 3969.

The paper is structured as follows. In Section 2, we recall a construction due to Merkurjev
[8], which to every G-lattice L associates an abelian group ®(G, L). By a result of Merkurjev,
to show that Question 1.1 has a negative answer, it suffices to exhibit G and L such that
®(G, L) # 0; see Theorem 2.3. This reduces Question 1.1 to a problem in integral represen-
tation theory. In Section 3, we associate to every finite group G a G-lattice M. In Sections 4
and 5 we show that if the group cohomology of G with Z/2 coefficients satisfies a certain
condition, then ®(G, M) # 0; see Proposition 5.3(b). Finally, in Section 6, we show that the
condition of Proposition 5.3(b) is satisfied when G is a 2-Sylow subgroup of Sz(8).

2. Merkurjev’s reformulation of Question 1.1

Let G be a finite group, and let L be a G-lattice, i.e., a G-module that is finitely generated
and free as a Z-module. By definition, the second exterior power A\*(L) of L is the quotient
of L ® L by the subgroup generated by all elements of the form x ® x, x € L. We denote
by I'?(L) the factor group of L ® L by the subgroup generated by x ® y + y ® x, x,y € L.
We write x A y for the coset of x ® y in /\2(L), and x = y for the coset of x ® y in I'2(L).

We have a short exact sequence
2.1) 0> L/25TxL) 5 AX(L) -0,
where ((x + 2L) = x x» x, and w(x * y) = x A y. We write
ar : H' (G, \*(L)) - H*(G,L/2)

for the connecting homomorphism for (2.1). Recall that a G-lattice is called a permutation
lattice if it admits a permutation basis, i.e., a Z-basis stable under the G-action. A G-lattice L’
is said to be stably equivalent to L if there exist permutation G-lattices P and P’ such
that Lo P ~L' & P'.

LEMMA 2.1. — (a) Assume that L is a permutation G-lattice, and let x1,...,x, be a
permutation basis of L. Then the homomorphism
Ir'2(L) — L/2, xi*xj > 00 #j), xixxi+>x;+2L,
defines a splitting of (2.1). Moreover, the homomorphism
AN*(L) = T2(L),  xiAxj—>xixx; (i <j)
is a section of .

(b) Let L’ be a G-lattice stably equivalent to L. Then Im(ar) ~ Im(ar/).

Proof. — This is contained in [8, §2]. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



