quatrième série - tome 56

fascicule 2

mars-avril 2023

ANNALES
SCIENTIFIQUES

de

L'ÉCOLE

NORMALE

SUPÉRIEURE

Federico SCAVIA

Torsion classes in the equivariant Chow groups of algebraic tori

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Annales Scientifiques de l'École Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Yves de Cornulier

Publication fondée en 1864 par Louis Pasteur Comité de rédaction au 1er octobre 2021

Continuée de 1872 à 1882 par H. SAINTE-CLAIRE DEVILLE

de 1883 à 1888 par H. DEBRAY

S. CANTAT

G. GIACOMIN

G. CARRON

D. HÄFNER

de 1889 à 1900 par C. Hermite Y. Cornulier D. Harari de 1901 à 1917 par G. Darboux F. Déglise C. Imbert de 1918 à 1941 par É. Picard A. Ducros S. Morel

de 1942 à 1967 par P. Montel B. Fayad P. Shan

Rédaction / Editor

Annales Scientifiques de l'École Normale Supérieure, 45, rue d'Ulm, 75230 Paris Cedex 05, France.

Tél.: (33) 1 44 32 20 88. Fax: (33) 1 44 32 20 80.

Email:annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France Case 916 - Luminy 13288 Marseille Cedex 09

Tél.: (33) 04 91 26 74 64. Fax: (33) 04 91 41 17 51

Email: abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 459 euros. Abonnement avec supplément papier :

Europe : 646 €. Hors Europe : 730 € (\$ 985). Vente au numéro : 77 €.

© 2023 Société Mathématique de France, Paris

En application de la loi du 1^{er} juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l'autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).

All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Fabien Durand

Périodicité: 6 nos / an

TORSION CLASSES IN THE EQUIVARIANT CHOW GROUPS OF ALGEBRAIC TORI

BY FEDERICO SCAVIA

ABSTRACT. – We give an example of an algebraic torus T such that the group $CH^2(BT)_{tors}$ is non-trivial. This answers a question of Blinstein and Merkurjev.

RÉSUMÉ. – On donne un exemple d'un tore algébrique T tel que le groupe $CH^2(BT)_{tors}$ est non nul. Ceci répond à une question de Blinstein et Merkurjev.

1. Introduction

Let F be a field, and let G be a linear algebraic group over F. Let $i \ge 0$ be an integer, let V be a linear representation of G over F, and assume that there exists a G-invariant open subscheme U of V such that U is the total space of a G-torsor $U \to U/G$ and $V \setminus U$ has codimension at least i + 1 in V. Following B. Totaro [10, Definition 1.2], we define

$$CH^{i}(BG) := CH^{i}(U/G).$$

This definition does not depend on the choice of V and U; see [10, Theorem 1.1]. The graded abelian group $CH^*(BG) := \bigoplus_{i \geq 0} CH^i(BG)$ has the structure of a commutative ring with identity.

If T is a split F-torus, and \hat{T} is the character lattice of T, then there is a canonical isomorphism $\operatorname{Sym}(\hat{T}) \simeq \operatorname{CH}^*(BT)$. Thus, if T has rank n, $\operatorname{CH}^*(BT)$ is a polynomial ring with n generators in degree 1, and in particular its underlying additive group is torsion-free.

When G is a finite group, a lot of work on $CH^*(BG)$ has been carried out by a number of authors, for example N. Yagita [15], P. Guillot [6] and Totaro. Totaro's book [11] is devoted to the study of $CH^*(BG)$ and to its relation to the group cohomology of G.

When G is a split reductive group, there is an extensive literature dealing with computations of $CH^*(BG)$. For instance, the ring $CH^*(BG)$ has been computed for $G = GL_n$,

The author was partially supported by a graduate fellowship from the University of British Columbia. This research was made possible through funding provided by Mitacs.

572 F. SCAVIA

 SL_n , Sp_{2n} by Totaro [10], for $G = O_n$, SO_{2n+1} by Totaro and R. Pandharipande [10] [9], for $G = SO_{2n}$ by R. Field [4], for $G = G_2$ by N. Yagita [14], for $G = PGL_3$ by G. Vezzosi [12], and for $G = PGL_p$ (additively) by A. Vistoli [13].

Let F_s be a separable closure of F, let $\mathcal{G} := \operatorname{Gal}(F_s/F)$ be the absolute Galois group of F. If X is an F-scheme, we define $X_s := X \times_F F_s$. When G is not assumed to be split, a lot less is known about $\operatorname{CH}^*(BG)$. Assume that G = T is an F-torus, not necessarily split. Then we have canonical isomorphisms

$$CH^1(BT) \simeq CH^1(BT_s)^{\mathcal{G}} \simeq (\hat{T}_s)^{\mathcal{G}}.$$

The natural homomorphism

$$CH^2(BT) \to CH^2(BT_s)^{\mathcal{G}}$$

is not surjective in general; many examples can be obtained from [1, Lemma 4.2, Theorem 4.10, Theorem 4.13].

When X is a smooth variety over F, the natural map

$$CH^2(X) \to CH^2(X_s)^{\mathcal{G}}$$

is in general neither injective nor surjective, that is, Galois descent for codimension 2 cycles may fail. It is a difficult and interesting problem to study the kernel and cokernel of the previous map, even for special families of varieties X, and an extensive literature is devoted to it.

Since $CH^2(BT_s)$ is torsion-free, a norm argument shows that

$$Ker(CH^2(BT) \to CH^2(BT_s)^{\mathcal{G}}) = CH^2(BT)_{tors}$$

where $CH^2(BT)_{tors}$ is the torsion subgroup of $CH^2(BT)$. The group $CH^2(BT)_{tors}$ plays a prominent role in work of S. Blinstein and A. Merkurjev, where it appears as the first term of the exact sequence of [1, Theorem B]. In [1, Theorem 4.7], Blinstein and Merkurjev showed that $CH^2(BT)_{tors}$ is finite and $2 \cdot CH^2(BT)_{tors} = 0$. They posed the following question.

QUESTION 1.1 ([1, Question 4.9]). – Is
$$CH^2(BT)_{tors}$$
 trivial for every torus T?

Merkurjev studied this question further in [8]. He showed that $CH^2(BT)_{tors} = 0$ in many cases, for example:

- when BT is 2-retract rational, by [8, Corollary 5.5];
- when the 2-Sylow subgroups of the splitting group of *T* are cyclic or Klein four-groups, by [8, Proposition 2.1(2), Example 4.3, and Corollary 5.3];
- when char F = 2, by [8, Corollary 5.5];
- when $T = R_{E/F}(\mathbb{G}_{\mathrm{m}})/\mathbb{G}_{\mathrm{m}}$ and E/F is a finite Galois extension, by [8, Example 4.2, Corollary 5.3].

The purpose of this paper is to show that Question 1.1 has a negative answer.

THEOREM 1.2. – There exist a field F and an F-torus T such that $CH^2(BT)_{tors}$ is not trivial.

In our example, the splitting group G of T is a 2-Sylow subgroup of the Suzuki group Sz(8), and $F = \mathbb{Q}(V)^G$, where V is a faithful representation of G over \mathbb{Q} . The group G has order 64; no counterexample with a splitting group of smaller order can be detected using our method. The torus T has dimension $2^{12} - 2^7 + 1 = (2^6 - 1)^2 = 3969$.

The paper is structured as follows. In Section 2, we recall a construction due to Merkurjev [8], which to every G-lattice L associates an abelian group $\Phi(G, L)$. By a result of Merkurjev, to show that Question 1.1 has a negative answer, it suffices to exhibit G and L such that $\Phi(G, L) \neq 0$; see Theorem 2.3. This reduces Question 1.1 to a problem in integral representation theory. In Section 3, we associate to every finite group G a G-lattice G. In Sections 4 and 5 we show that if the group cohomology of G with $\mathbb{Z}/2$ coefficients satisfies a certain condition, then $\Phi(G, M) \neq 0$; see Proposition 5.3(b). Finally, in Section 6, we show that the condition of Proposition 5.3(b) is satisfied when G is a 2-Sylow subgroup of Sz(8).

2. Merkurjev's reformulation of Question 1.1

Let G be a finite group, and let L be a G-lattice, i.e., a G-module that is finitely generated and free as a \mathbb{Z} -module. By definition, the second exterior power $\bigwedge^2(L)$ of L is the quotient of $L \otimes L$ by the subgroup generated by all elements of the form $x \otimes x$, $x \in L$. We denote by $\Gamma^2(L)$ the factor group of $L \otimes L$ by the subgroup generated by $x \otimes y + y \otimes x$, $x, y \in L$. We write $x \wedge y$ for the coset of $x \otimes y$ in $\bigwedge^2(L)$, and $x \star y$ for the coset of $x \otimes y$ in $\Gamma^2(L)$.

We have a short exact sequence

$$(2.1) 0 \to L/2 \xrightarrow{\iota} \Gamma^2(L) \xrightarrow{\pi} \bigwedge^2(L) \to 0,$$

where $\iota(x+2L)=x\star x$, and $\pi(x\star y)=x\wedge y$. We write

$$\alpha_L: H^1(G, \bigwedge^2(L)) \to H^2(G, L/2)$$

for the connecting homomorphism for (2.1). Recall that a G-lattice is called a permutation lattice if it admits a permutation basis, i.e., a \mathbb{Z} -basis stable under the G-action. A G-lattice L' is said to be stably equivalent to L if there exist permutation G-lattices P and P' such that $L \oplus P \simeq L' \oplus P'$.

LEMMA 2.1. – (a) Assume that L is a permutation G-lattice, and let $x_1, ..., x_n$ be a permutation basis of L. Then the homomorphism

$$\Gamma^2(L) \to L/2$$
, $x_i \star x_j \mapsto 0 \ (i \neq j)$, $x_i \star x_i \mapsto x_i + 2L$,

defines a splitting of (2.1). Moreover, the homomorphism

$$\bigwedge^2(L) \to \Gamma^2(L), \qquad x_i \wedge x_j \mapsto x_i \star x_j \ (i < j)$$

is a section of π .

(b) Let L' be a G-lattice stably equivalent to L. Then $\operatorname{Im}(\alpha_L) \simeq \operatorname{Im}(\alpha_{L'})$.

Proof. – This is contained in [8,
$$\S 2$$
].