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Abstract. — The purpose of this paper is to describe the topology of real analytic
planar curves in the neighborhood of a singular point. Locally, such a curve consists
of a number of branches that intersect a small circle centered on the singularity at two
points. The local topology is described by a chord diagram: an even number of points
on a circle, associated two by two. We show that most chord diagrams do not come
from singularities. When this is the case, we call them analytical diagrams. First, we
propose a recursive description of analytical diagrams. Then we characterize these
analytical diagrams as those that do not contain as subdiagrams those which belong
to a collection that we describe explicitly.

Résumé (Sur la topologie des courbes analytiques réelles au voisinage des points singuliers)

Le but de cet article est de décrire la topologie des courbes analytiques réelles
planes au voisinage d’un point singulier. Localement, une telle courbe est constituée
d’un certain nombre de branches qui coupent un petit cercle centré sur la singularité
en deux points. La topologie locale est décrite par un diagramme de cordes : un
nombre pair de points sur un cercle, associés deux par deux. Nous montrons que la
plupart des diagrammes de cordes ne proviennent pas de singularités. Quand c’est
le cas nous les qualifions d’analytiques. Nous proposons d’abord une description
récursive des diagrammes analytiques. Puis nous caractérisons ces diagrammes
analytiques comme étant ceux ne contenant pas comme sous-diagramme ceux qui
appartiennent a une famille que nous décrivons explicitement.

Statement of the main result

In this paper, we propose a complete description of the topology of real analytic
planar curves in the neighborhood of a singular point.

Denote by R{z,y} the factorial ring of germs of real analytic functions defined in
some neighborhood of (0,0) € R2. The germ of a real analytic planar curve is defined
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2 E. GHYS & C.-L. SIMON

by an equation F(z,y) = 0, where F € R{xz,y} vanishes at the origin. If F' is an
irreducible element in this ring, the topology of the curve Cr defined by F is well
known. Either it only contains the origin (as for 22 + 32 = 0) or there is a local
homeomorphism of the plane, mapping Cr to (the germ of) a straight line (as for
instance with 23 — y? = 0). In this second case, r intersects small circles centered at
the origin in exactly two points.

In general F is a product Fy'* - - F;'* of irreducible non-associated factors Fj. Our
curve Cp is therefore the union of the Cr,, which are usually called the branches of Cr.
Since we are only interested in the topology of Cr, we can discard those F;’s such that
Cr, only contains the origin. Two distinct factors F; yield two branches which only
intersect at the origin. Hence the analytic curve Cr intersects small circles centered at
the origin in an even number of points, grouped in pairs, each pair being associated to
a branch. This yields a chord diagram which is by definition an even number of distinct
points on the circle, grouped in pairs, up to an orientation preserving homeomorphism
of the circle. Such a diagram is pictured by a certain number of chords with distinct
endpoints in a circle. See for instance [4] for a detailed description of the role of chord
diagrams in topology.

FIGURE 1. A curve with three branches and its associated chord diagram

The main theorem of this paper characterizes the chord diagrams arising from some
analytic curve Cr.

Theorem. — A chord diagram is associated to some analytic curve if and only if it
does not contain one of the “forbidden diagrams” shown in Figure 2 as a sub-chord
diagram.

The genesis of this paper

Consider four distinct polynomials Py, Py, P3, Py in R[z]. Order them in such a way
that Pi(z) < Py(z) < P3(z) < Py(x) for small negative values of z. Then define the
permutation 7 on {1,2,3,4} such that Pr(1)(2) < Pr(2)(z) < Pr(3)(7) < Prg(x) for
small positive values of x. In 2009, Maxim Kontsevich explained to the first author
EG that among the 24 permutations on {1,2,3,4} exactly two cannot be obtained
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Fi1cURE 2. Forbidden diagrams: ’é‘, ’<><>‘, A\, and Cp (n > 5)

by this construction: (1,2,3,4) — (2,4,1,3) or (3,1,4,2). EG easily generalized this
to any number of polynomials and proved that a permutation on {1,...,n} can be
obtained from n polynomials if and only if it does not “contain” one of Kontsevich’s
permutations. This was published as an elementary paper [7]. We will give a different
proof later in Section 2.

It was then very natural to look at the topological configurations of the branches
of a real analytic curve in the neighborhood of a singular point. Trying to solve
this problem, EG found an explicit algorithm determining if a given chord diagram
is analytic, i.e., is associated to the branches of some real analytic singular point.
In particular, it followed that the above forbidden chord diagrams were indeed not
analytic. One can always delete some branches of an analytic curve, so that a sub-
chord diagram of an analytic diagram is of course analytic. In particular, a diagram
containing one of the forbidden examples is non-analytic. The question of knowing
whether these examples were the only “minimal” forbidden configurations remained
open.

Since this proof was enjoyable and involved classical methods, EG decided to write
a book proposing a leisurely promenade towards this partial result, intended for under-
graduate students. The second author CS was such a student and read a preliminary
draft of that book. He proposed to look at the problem from another side, explained
below, and this new point of view enabled both authors to complete the proof of the
above theorem in a joint effort. Therefore the final version of the book contains an
additional chapter, describing this result [§].

The present paper contains two sections. The first provides an algorithmic de-
scription of the analytic chord diagrams and the second uses the first to prove the
main result. This paper is very close to the corresponding chapters of the book. We
essentially “compressed” these chapters in order to get more efficiently to the main
goal.

1. Analytic chord diagrams: an algorithm

In this section, we get an algorithmic description of the analytic chord diagrams,
that we defined as those which are determined by the branches of planar real analytic
curves.
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1.1. Polynomial interchanges: algorithmic description. — The only purpose of this
subsection is to discuss quickly the much simpler situation of permutations arising
from polynomials in R[z] which were the starting point of this paper. This serves as a
motivation and gives a pattern for the general strategy, somewhat different from that

in [7].
Let m be a permutation of {1,...,n} (n > 2). We say that 7 is a polynomial
interchange if there exist n polynomials Py, ..., P, in R[z] such that

Pl(CL') < Pz(iL‘) < e < Pn(il,')
for small negative x and
Pﬂ.(l)(x) < Pﬂ.(g) (:IZ) <0 < Pﬂ.(n) (33)

for small positive x.

We describe an elementary algorithm that determines if a given permutation is a
polynomial interchange. In the next section, we will characterize polynomial inter-
changes as those permutations which do not contain the two forbidden Kontsevich
permutations.

Lemma. — For any polynomial interchange, at least two consecutive integers have
consecutive 1mages.

The proof is easy. Denote by v(P) € NU {oo} the valuation (at 0) of a polynomial
P € R[z], i.e., the lowest degree of a non zero monomial in P (and oo if P = 0). Choose
polynomials Py, - - , P, as above. For every integer N, the relation v(P; — P;) > N is
an equivalence relation Ry on {1,...,n}. Each equivalence class I C {1,...,n} is
an interval. Indeed, suppose that i < j < k and that ¢,k € I. We know that P;(z) <
Pj(z) < Py(x) for small negative z. It follows that v(P; — P;) > v(Py — P;) > N
so that j € I. The same argument, for small positive z, implies that 7 (I) is also an
interval. Let Ny be the largest value of N for which equivalence classes of R are not
reduced to singletons. Let I be an equivalence class of Ry, with at least two elements.
Since all the valuations v(P; — P;) are equal to Ny for ¢, j in I, the permutation 7 is
either increasing or decreasing from I to 7(I), depending on the parity of Ny. The
lemma follows if one chooses two consecutive elements in I. U

Note in particular that the two permutations (1,2,3,4) — (2,4,1,3) or (3,1,4,2)
are not polynomial interchanges.

Theorem. — The following algorithm decides if a permutation 7 is a polynomial in-
terchange:

1. If no pair of consecutive integers have consecutive images then m is not a poly-
nomial interchange.

2. If there is such a pair, merge it to a singleton. This produces a permutation
with one object less. Continue.

3. If you end up with the trivial permutation on one object, then the original
permutation was a polynomial interchange.
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