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Abstract. — We give a proof of Jakobson’s theorem: with positive probability on the
parameter, a real quadratic map leaves invariant an absolutely continuous ergodic
invariant probability measure with positive Lyapunov exponent.

Résumé. — Nous présentons une démonstration du théorème de Jakobson: avec
probabilité strictement positive sur le paramètre, un polynôme quadratique réel
admet une mesure de probabilité invariante ergodique qui est absolument continue
par rapport à la mesure de Lebesgue et dont l’exposant de Lyapunov est strictement
positif.

1. Introduction

1.1. Statement of the theorem. — In the 1960’s, Sinai, Ruelle and Bowen developed
the ergodic theory of uniformly hyperbolic dynamical systems. In the simplest setting
of a uniformly expanding map of a torus, one obtains a unique ergodic invariant
probability measure absolutely continuous w.r.t. the Lebesgue measure. In the 1970’s,
a systematic study of unimodal maps of the interval was initiated. The quadratic
family Pc(x) = x2 + c appeared as a central object, from the point of view of real as
well as complex 1-dimensional dynamics. When the critical point escapes to infinity,
the same is true for almost all orbits. When Pc has an attractive periodic orbit, it
attracts almost all non escaping orbits. Does there exist, for a typical parameter c,
another kind of dynamical behavior?

Jakobson [5] provided a positive answer:

Theorem 1.1. — There exists a set Λ of positive Lebesgue measure such that, for c ∈ Λ,
the quadratic polynomial Pc has an ergodic invariant absolutely continuous probability
measure with positive Lyapunov exponent, supported on the interval [Pc(0), P 2

c (0)].
One has actually

lim
ε→0

ε−1Leb(Λ ∩ [−2,−2 + ε]) = 1.
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After Jakobson’s original paper, a number of different proofs appeared [1] [10].
Jakobson’s theorem was the subject of my lectures at Collège de France in 1997–98.
A first handwritten version of the following notes was produced at the time, and was
made available over the years to those who asked me. It is perhaps not too late for a
most systematic diffusion effort.

1.2. Some facts about quadratic polynomials. — We refer to [2] and [8] as general
references for the results in this subsection, with the exception of the last paragraph.

For a complex parameter c, we denote by Pc the complex quadratic polynomial
Pc(z) = z2 + c. Recall that the filled-in Julia set K(c) is the set of points in C
which have a bounded orbit under iteration of Pc. It is a non-empty full compact
subset of the complex plane invariant under Pc. Its boundary is the Julia set J(c).
When c is real, we define KR(c) to be the intersection K(c) ∩ R. Similarly, we define
JR(c) := J(c) ∩ R.

The Mandelbrot set M is the set of parameters c such that the critical point 0

of Pc belongs to K(c). By a theorem of Douady-Hubbard, this happens iff K(c) is
connected. The Mandelbrot set is a non-empty full compact subset of the complex
plane. When the parameter c does not belong to M , K(c) = J(c) is a Cantor set and
the restriction of Pc to Kc is an expanding map conjugated to the full unilateral shift
on two symbols.

In the rest of this subsection, we only consider real parameters. The intersection
of M with the real line is equal to the interval [−2, 1/4]. For c > 1/4, the Julia set is
disjoint from the real line. When c < −2, the Julia set is contained in the real line.

For c = 1/4, Pc has a single fixed point at z = 1/2, which is parabolic in the
sense that DPc(1/2) = 1. For c < 1/4, the two fixed points of Pc are real. It is
customary to denote the larger one by β := 1

2 (1 +
√

1− 4c) and the smaller one
by α := 1

2 (1 −
√

1− 4c). The fixed point β is repulsive for all c < 1/4. The fixed
point α is attractive for 1/4 > c > −3/4, repulsive for c < −3/4, with a flip bifurcation
occurring at c = −3/4. The real filled-in Julia setKR(c) is equal to the interval [−β, β]

for c ∈ [−2, 1/4].
The basin of any attractive periodic orbit must contain the critical point. Therefore

there is at most one attractive periodic orbit. Let A be the set of real parameters c
such that Pc has an attractive periodic orbit. It is an open subset of (−2, 1/4). When
c ∈A , the real Julia set JR(c) is an expanding invariant Cantor set equal to the com-
plement in KR(c) of the basin of the attractive periodic orbit. Conversely, a parameter
c ∈ [−2, 1/4] such that the real Julia set is expanding belongs to A .

A deep theorem conjectured by Fatou and proved independently by Graczyk-
Swiatek ([3], [4]) and Lyubich ([6]), asserts that the open set A is dense in [−2, 1/4].
Their result is posterior to Jakobson’s theorem. Observe that Jakobson’s theorem im-
plies that A does not have full Lebesgue measure in [−2, 1/4]. More recently, Lyubich
has shown ([7]) that almost all parameters in [−2, 1/4] either belong to A or satisfy
the conclusions of Jakobson’s theorem.
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1.3. Plan of the proof. — We describe now the content of the rest of this paper.
In Section 2, we introduce some of the main concepts for the proof of Jakobson’s

theorem. Denote by A the central interval whose endpoints are the negative fixed
point α and its inverse image −α. An interval J is regular of order n > 0 if there is
a branch gJ of P−nc which is a diffeomorphism on some fixed combinatorially defined
neighborhood Â of A and sends A onto J . A parameter c is regular if the central
interval is covered by regular intervals of order 6 n, except for a set of exponentially
small measure.

Regular parameters satisfy the conclusions of Jakobson’s theorem. One uses the
maximal regular intervals contained in the central interval to define on A a Bernoulli
map T which is a return map for P (but not the first return map). It is very classical
that such a map has a unique absolutely continuous invariant probability measure with
analytic density. As the return time relating T to Pc is integrable, one is able to spread
the T -invariant measure on A into a P -invariant measure supported on [Pc(0), P 2

c (0)].
This measure is still absolutely continuous. Its density w.r.t. the Lebesgue measure
is integrable but not square-integrable. The Lyapunov exponent of this measure is
positive.

In the last three sections of the paper, we assume that the parameter c is very close
to −2 (and > −2). This amounts to saying that the return timeM of the critical point
in the central interval A is large. In the first part of Section 3, the first iterates of Pc
for such a parameter are considered. It is shown in particular that, for 2 6 n 6M−2,
there are a couple of maximal regular intervals C±n of order n contained in A. These
intervals are called the simple regular intervals. Their union covers A except for a
small symmetric interval around 0 of approximate size 2−M .

To go further, we introduce the main definition of the paper: a parameter c is said
to be strongly regular if the postcritical orbit can be decomposed into regular returns
into the central interval A, and if most of these returns occur in the simple regular
intervals C±n . More specifically we ask that the fraction of total time spent in non
simple returns is at most 2−

√
M (to compare with the approximate size 2−M of the

gap left out by the simple regular intervals). For a strongly regular parameter, the
derivatives of the iterates along the postcritical orbit grow exponentially fast in a very
controlled way.

In Section 4, we prove that strongly regular parameters are regular, and thus satisfy
the conclusions of Jakobson’s theorem. For n > 0, an interval J is said to be n-singular
if J is contained in A, its endpoints are consecutive elements of P−n−1

c (α), and J is
not contained in a regular interval of order 6 n. One has to show that, if c is a
strongly regular parameter, the union of all n-singular intervals has exponentially
small Lebesgue measure. This is done by induction on n, the starting point being
provided by the estimates on simple regular intervals of Section 3. We divide the
n-singular intervals into several classes: peripheral, lateral, and central. The central
ones are so close to 0 that the crudest estimate of the Lebesgue measure of their
union is sufficient. On the other hand, each peripheral or lateral n-singular interval J
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is dynamically related to a m-singular interval J∗ with m < n. The control on the
postcritical orbit (Section 3) allows to conclude the induction step.

In the last section, we prove that, in the parameter interval (c(M), c(M−1)) where
the first return time of 0 in A is exactly equal to M , most parameters are strongly
regular. More precisely, for any θ < 1/2, the set of non strongly regular parameters
in (c(M), c(M−1)) has relative Lebesgue measure O(2−θM ).

We first transfer to the parameter space the “puzzle” structure of the phase space. In
order to do this we estimate the variation w.r.t. the parameter of the relevant inverse
branches of the iterates of Pc. The next step is to transfer to the parameter space
the measure estimates of Section 4 on the measure of n-singular intervals. There is a
rather subtle point here: while it is easy to transfer estimates for single intervals, for
sets which are union of many disjoint components, we need to control the sum of the
maximal measure (w.r.t. the parameter) of the components rather than the maximal
measure of the set itself. Fortunately, the combinatorial nature of the arguments of
Section 4 allows this control, except for the central n-singular intervals where a rough
but sufficient control of the number of components is used.

The last part of the proof is an easy and classical large deviation argument: once
we know that the order of a given regular return of the postcritical orbit in A is > n

with exponentially small probability, it is easy to control the measure of non strongly
regular parameters.

2. Regular parameters and Bernoulli maps

2.1. Regular points and regular parameters. — Consider a parameter c ∈ [−2, 0) for
the real quadratic family. The polynomial Pc has two fixed points α, β which verify
−β < α < 0. The critical value c = Pc(0) satisfies −β 6 Pc(0) < α.

Therefore, there exists α(1) ∈ (−β, α) such that P−1
c (−α) = {α(1),−α(1)}. We

define
A := [α,−α], Â := (α(1),−α(1)).

Definition 2.1. — Let c be a parameter in [−2, 0), and let n be a positive integer. A
point x ∈ [−β, β] is n-regular if there exists an integer m, with 0 < m 6 n, and an
open interval Ĵ with x ∈ Ĵ , such that the restriction of Pmc to Ĵ is a diffeomorphism
onto Â and Pmc (x) ∈ A.

Definition 2.2. — A parameter c ∈ [−2, 0) is regular if there exist θ, C > 0 such that,
for every n > 0 :

Leb{x ∈ A, x is not n-regular} 6 Ce−θn.

The set of regular parameters is denoted by R .

Theorem 2.3. — The set of regular parameters has positive Lebesgue measure. More
precisely, we have

lim
ε→0

ε−1Leb(R ∩ [−2,−2 + ε]) = 1.
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