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CATALAN’S CONJECTURE

[after Mihăilescu]

by Yuri F. BILU

To E.W.

1. INTRODUCTION

In 1844 Crelle’s journal published the following note [13].

Note
extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan, Répétiteur à

l’école polytechnique de Paris.

Je vous prie, Monsieur, de vouloir bien énoncer, dans votre recueil, le

théorème suivant, que je crois vrai, bien que je n’aie pas encore réussi à

le démontrer complètement : d’autres seront peut-être plus heureux :

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être

des puissances exactes ; autrement dit : l’équation x
m

− y
n = 1, dans

laquelle les inconnues sont entières et positives, n’admet qu’une seule

solution.

Thus, we have the following conjecture.

Conjecture 1.1 (Catalan). — Equation xu − yv = 1 has no solutions in integers

x, y, u, v > 1 other than 32 − 23 = 1.

Now, 158 years after, the conjecture is completely proved. Let us briefly review the

most important events which lead to the solution of this celebrated problem. This is

not a comprehensive historical account of Catalan’s problem; the latter can be found

in Ribenboim’s book [34] and Mignotte’s survey [26].

Seven years after Catalan’s note appeared, Lebesgue [21] proved that equation

xm − y2 = 1 has no solutions in positive integers x, y, m with m > 1. In 1965 Ko

Chao [18] showed that equation x2 − yn = 1 has no solutions in positive integers x, y, n

with n > 1 other than 32 − 23 = 1. These two results reduce Catalan’s conjecture to

the following assertion.
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Conjecture 1.2. — Equation

(1) xp − yq = 1

has no solutions in non-zero integers x, y and odd primes p, q.

Notice that we no longer assume x and y positive. It is convenient, because now

the problem is symmetric: if (x, y, p, q) is a solution, then so is (−y,−x, q, p). This

will be repeatedly used in the sequel.

From now on Conjecture 1.2 will be referred to as Catalan’s conjecture and (1) as

Catalan’s equation.

Cassels [12] discovered important arithmetical properties of solutions of Catalan’s

equation. His results (see Proposition 2.1) are indispensable in most of the subsequent

works on Catalan’s equation.

In 1976 Tijdeman [37] made a breakthrough. Using Baker’s theory, he proved that

the exponents p and q are bounded by an explicit absolute constant. Together with

the classical result of Baker [6] this implies that |x| and |y| are bounded by an explicit

absolute constant as well, and Catalan’s problem is thereby decidable.

In a different direction, Inkeri [16, 17] and others obtained algebraic criteria of

solubility of (1) in terms of the exponents p and q. In the nineties, Mignotte and

Roy used Inkeri-type criteria, Tijdeman’s argument and electronic computations to

obtain tight lower and upper bounds for p and q. (Upper bounds were also obtained

by Blass et al. [10] and O’Neil [32].) By 2000, it was proved that p and q lie between

107 and 1018. See [29] for more precise results and a survey of this period.

In 1999 Preda Mihăilescu enters the scene. In his first paper [29] he drastically

refined Inkeri’s criterion. And quite recently, after several unsuccessful attempts, he

finally settled [30] Catalan’s conjecture:

Theorem 1.3 (Mihăilescu). — Conjecture 1.2 is true.

The present paper contains a reasonably self-contained proof of this result.

Plan of the paper. — In Section 2 we recall Cassels’ relations and derive their imme-

diate consequence, in particular, Hyyrö’s lower bounds for |x| and |y|. In Section 3 we

very briefly review algebraic criteria for Catalan’s equation in terms of p and q, and

prove Mihăilescu’s“double Wieferich”criterion. In Section 4 we use binary logarithmic

forms, Tijdeman’s argument, and computations by Mignotte and Roy to show that

p 6≡ 1 mod q. Section 5 contains general lemmas. In Section 6 Theorem 1.3 is reduced

to three more technical statements, which are proved in the three final section.
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1.1. Notation

In the sequel we assume, unless the contrary is indicated explicitly, that x, y are

non-zero integers and p, q are odd prime numbers satisfying

(2) xp − yq = 1.

As we had already noticed, (2) implies that (−y)q − (−x)p = 1, and all the statements

below remain true with x, y, p, q replaced by −y,−x, q, p.

We denote by ζ a primitive p-th root of unity and put

K = Q(ζ), G = Gal(K/Q).

The principal ideal (1 − ζ) will be denoted by p. Recall that it is a prime ideal of K

and that (p) = pp−1.

More specific notation will be introduced at the appropriate places.

2. CASSELS’ RELATIONS AND LOWER ESTIMATES FOR |x|
AND |y|

Cassels [12] proved that q|x and p|y. More precisely, he established the following

relations.

Proposition 2.1 (Cassels). — There exist a non-zero integer a and a positive inte-

ger v such that

x − 1 = pq−1aq , y = pav,(3)

xp − 1

x − 1
= pvq,(4)

and, symmetrically, there exist a non-zero integer b and a positive integer u such that

y + 1 = qp−1bp, x = qub,(5)

yq + 1

y + 1
= qup.(6)
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The following consequence is crucial.

Corollary 2.2. — The number λ := (x − ζ)/(1 − ζ) is an algebraic integer. The

principal ideal (λ) is a q-th power of an ideal of the field K.

Proof. — Since p|(x−1) by (3), the prime ideal p = (1 − ζ) divides x − ζ , but p2 does

not. Hence λ is an algebraic integer, not divisible by p, and the same is true for its

conjugates λσ , where σ ∈ G. Identity (1 − ζσ)λσ − (1 − ζτ )λτ = ζτ − ζσ implies that

for distinct σ, τ ∈ G, the greatest common divisor of λσ and λτ divides (ζτ − ζσ) = p.

Hence the numbers λσ are pairwise co-prime.

Now rewrite (4) as
∏

σ∈G λσ = vq . Since the factors are pairwise co-prime, each

principal ideal (λσ) is a q-th power of an ideal.

Cassels’ relations imply various lower estimates for the variables x and y in terms

of p and q. For instance, (3) and (5) immediately yield

|x| > pq−1 − 1,(7)

|y| > qp−1 − 1,(8)

and this can be refined without much effort.

Hyyrö [15] obtained an estimate of a different kind: |x| > q(2p + 1)(2qp−1 + 1)

(and similarly for |y|). Since Hyyrö’s paper is not easily available, I prove below a

slightly weaker estimate, which is totally sufficient for our purposes. It is an easy

consequence of the following proposition.

Proposition 2.3. — If p does not divide q − 1 then qp−2
∣∣ (u − 1).

Proof. — Rewriting (6) as
(
(−y)q−1 − 1

)
+

(
(−y)q−2 − 1

)
+ · · · + (−y − 1) = q (up − 1) ,

we deduce that (y + 1) |(q (up − 1)) . Now (5) implies that up ≡ 1 mod qp−2. Since p

does not divide the order qp−3(q − 1) of the multiplicative group mod qp−2, this im-

plies that u ≡ 1 mod qp−2.

Corollary 2.4. — We have |x| > qp−1.

Proof. — If p|(q − 1) then p < q and the result follows from (7). If p does not di-

vide q − 1 then qp−2
∣∣ (u − 1), and, since u is positive, this implies u > qp−2 + 1. Since

x = qub, we have |x| > qu > qp−1 + q, better than wanted.

Remark 2.5. — This version of Hyyrö’s argument is due to Mignotte and Bugeaud.

It was kindly communicated to me by Yann Bugeaud. Using more advanced tools,

Mihăilescu [30, Appendix A] obtained a much sharper estimate |x| >
(
q2p−2/2

)4
.

ASTÉRISQUE 294



(909) CATALAN’S CONJECTURE 5

3. ALGEBRAIC CRITERIA

Using Cassels’ relations and some algebraic number theory, one may get various

algebraic criteria of solvability of Catalan’s equation with given exponents p and q.

The most famous criterion is due to Inkeri [16, 17]:

Theorem 3.1 (Inkeri). — With the notation of Subsection 1.1, put Kp = Q(
√−p)

if p ≡ 3 mod4 and Kp = K if p ≡ 1 mod 4. Then either pq−1 ≡ 1 mod q2 or q divides

the class number of the field Kp.

It will be explained in Subsection 4.4 how algebraic criteria of this kind, together

with electronic computations, allow one to obtain lower bounds for p and q.

Refinements of and supplements for Inkeri’s criterion were suggested by Mignotte

[25], Schwarz [35] and others; see [26] for a survey of these results. I would es-

pecially mention the paper by Bugeaud and Hanrot [11], which strongly influenced

Mihăilescu’s work.

Verification of Inkeri’s criterion for a given pair (p, q) requires computing certain

class numbers, which seriously affects its computational efficiency. Mihăilescu [29]

made a major step forward, showing that the class number condition can be omitted.

Theorem 3.2 (Mihăilescu). — For any solution of (x, y, p, q) of (2) we have q2|x
and

(9) pq−1 ≡ 1 mod q2.

Congruence (9) (called Wieferich’s relation) will be used in Section 4 to prove that

p 6≡ 1 mod q. Relation q2|x is crucial in the proof of Theorem 6.3.2.

By symmetry, one has qp−1 ≡ 1 mod p2. Pairs (p, q), satisfying this and (9) are

called double Wieferich pairs. Only six such pairs are currently known:

(2, 1093), (3, 1006003), (5, 1645333507), (83, 4871), (911, 318917), (2903, 18787).

I sketch the proof of Theorem 3.2, because it is very instructive and can serve as a

good model of the much more involved proof of Theorem 1.3. See [24,33] for different

proofs.

3.1. Proof of Theorem 3.2

For a ∈ {1, 2, . . . , p − 1} let σa be the element of G = Gal(K/Q) be defined by

ζ 7→ ζa. In the group ring Z[G] consider elements

Θc =

p−1∑

a=1

bac/pcσ−1
a (c = 1, 2, . . . , p − 1).

In particular, Θ1 = 0 and Θ2 = σ(p+1)/2 + · · · + σp−1. Ideal I = (Θ1, Θ2, . . . , Θp−1)

of Z[G] is called the Stickelberger ideal. Its main property is the Stickelberger theorem:
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