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CATALAN’S CONJECTURE
[after Mih&ilescul]

by Yuri F. BILU

To E.W.
1. INTRODUCTION
In 1844 Crelle’s journal published the following note [13].
Note
extraite d’une lettre adressée a I’éditeur par Mr. E. Catalan, Répétiteur a
I’école polytechnique de Paris.
Je vous prie, Monsieur, de vouloir bien énoncer, dans votre recueil, le
théoréme suivant, que je crois vrai, bien que je n’aie pas encore réussi a
le démontrer complétement : d’autres seront peut-étre plus heureux :
Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent étre
des puissances exactes ; autrement dit : I'équation z™ — y"™ = 1, dans
laquelle les inconnues sont entieres et positives, n’admet qu’une seule
solution.
Thus, we have the following conjecture.
CONJECTURE 1.1 (Catalan). — Equation z* —y” =1 has no solutions in integers

z,y,u,v > 1 other than 3% — 23 = 1.

Now, 158 years after, the conjecture is completely proved. Let us briefly review the
most important events which lead to the solution of this celebrated problem. This is
not a comprehensive historical account of Catalan’s problem; the latter can be found
in Ribenboim’s book [34] and Mignotte’s survey [26].

Seven years after Catalan’s note appeared, Lebesgue [21] proved that equation
xm
Chao [18] showed that equation 22 — y™ = 1 has no solutions in positive integers z, y, n

with n > 1 other than 32 — 23 = 1. These two results reduce Catalan’s conjecture to

—y? =1 has no solutions in positive integers x,y,m with m > 1. In 1965 Ko

the following assertion.
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CONJECTURE 1.2. — FEgquation
0 Wy =1

has no solutions in non-zero integers x,y and odd primes p,q.

Notice that we no longer assume z and y positive. It is convenient, because now
the problem is symmetric: if (z,y,p,q) is a solution, then so is (—y, —z,¢,p). This
will be repeatedly used in the sequel.

From now on Conjecture 1.2 will be referred to as Catalan’s conjecture and (1) as
Catalan’s equation.

Cassels [12] discovered important arithmetical properties of solutions of Catalan’s
equation. His results (see Proposition 2.1) are indispensable in most of the subsequent
works on Catalan’s equation.

In 1976 Tijdeman [37] made a breakthrough. Using Baker’s theory, he proved that
the exponents p and ¢ are bounded by an explicit absolute constant. Together with
the classical result of Baker [6] this implies that |x| and |y| are bounded by an explicit
absolute constant as well, and Catalan’s problem is thereby decidable.

In a different direction, Inkeri [16,17] and others obtained algebraic criteria of
solubility of (1) in terms of the exponents p and ¢. In the nineties, Mignotte and
Roy used Inkeri-type criteria, Tijdeman’s argument and electronic computations to
obtain tight lower and upper bounds for p and ¢. (Upper bounds were also obtained
by Blass et al. [10] and O’Neil [32].) By 2000, it was proved that p and ¢ lie between
107 and 10'8. See [29] for more precise results and a survey of this period.

In 1999 Preda Mih&ilescu enters the scene. In his first paper [29] he drastically
refined Inkeri’s criterion. And quite recently, after several unsuccessful attempts, he
finally settled [30] Catalan’s conjecture:

THEOREM 1.3 (Mihdilescu). — Congecture 1.2 is true.

The present paper contains a reasonably self-contained proof of this result.

Plan of the paper. — In Section 2 we recall Cassels’ relations and derive their imme-
diate consequence, in particular, Hyyrs’s lower bounds for |z| and |y|. In Section 3 we
very briefly review algebraic criteria for Catalan’s equation in terms of p and ¢, and
prove Mihiilescu’s “double Wieferich” criterion. In Section 4 we use binary logarithmic
forms, Tijdeman’s argument, and computations by Mignotte and Roy to show that
p # 1mod ¢q. Section 5 contains general lemmas. In Section 6 Theorem 1.3 is reduced
to three more technical statements, which are proved in the three final section.
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1.1. Notation

In the sequel we assume, unless the contrary is indicated explicitly, that x,y are
non-zero integers and p, g are odd prime numbers satisfying
(2) P —y? =1.

As we had already noticed, (2) implies that (—y)? — (—2)? = 1, and all the statements
below remain true with x,y, p, q¢ replaced by —y, —z, q, p.
We denote by ¢ a primitive p-th root of unity and put

K =Q(), G=Gal(K/Q).

The principal ideal (1 — ¢) will be denoted by p. Recall that it is a prime ideal of K
and that (p) = pP~L.
More specific notation will be introduced at the appropriate places.

2. CASSELS’ RELATIONS AND LOWER ESTIMATES FOR |[z|
AND [y

Cassels [12] proved that g|x and p|y. More precisely, he established the following
relations.

PROPOSITION 2.1 (Cassels). — There exist a non-zero integer a and a positive inte-
ger v such that

(3) x—1=p""a?, y=pav,
P —1
4 — ol
(4) — =
and, symmetrically, there exist a non-zero integer b and a positive integer u such that
(5) y+1=¢""10", x=qub,
yr+1
6 = quP.
(6) 1 ¢
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The following consequence is crucial.

COROLLARY 2.2. — The number X := (x — {)/(1 — () is an algebraic integer. The
principal ideal () is a g-th power of an ideal of the field K.

Proof. — Since p|(x—1) by (3), the prime ideal p = (1 — ) divides x — ¢, but p? does
not. Hence ) is an algebraic integer, not divisible by p, and the same is true for its
conjugates \?, where o € G. Identity (1 — (7)A7 — (1 — ¢")\™ = (" — ¢ implies that
for distinct o, 7 € G, the greatest common divisor of A% and A" divides (¢" — () = p.
Hence the numbers A7 are pairwise co-prime.

Now rewrite (4) as [[,cq
principal ideal (A7) is a g-th power of an ideal. o

A% = 9. Since the factors are pairwise co-prime, each

Cassels’ relations imply various lower estimates for the variables x and y in terms
of p and ¢. For instance, (3) and (5) immediately yield
(7) |z > p?7t -1,
(8) |y| 2 qp71 - 17
and this can be refined without much effort.

Hyyr6 [15] obtained an estimate of a different kind: |z| > q(2p+1)(2¢P~1 + 1)
(and similarly for |y|). Since Hyyrd’s paper is not easily available, I prove below a

slightly weaker estimate, which is totally sufficient for our purposes. It is an easy
consequence of the following proposition.

PROPOSITION 2.3. — If p does not divide ¢ — 1 then qp_Q‘ (u—1).
Proof. — Rewriting (6) as

()™ =)+ ()2 =)+ -+ (~y = 1) = q(u? - 1),

we deduce that (y + 1) |(g(u? —1)). Now (5) implies that u? = 1 mod ¢?~2. Since p
does not divide the order ¢?=3(q — 1) of the multiplicative group mod ¢?~2, this im-
plies that u = 1 mod ¢?~2. O

COROLLARY 2.4. — We have |z| > ¢P~ 1.

Proof. — If p|(¢ — 1) then p < ¢ and the result follows from (7). If p does not di-
vide ¢ — 1 then qp_Q‘ (u — 1), and, since u is positive, this implies u > ¢?~2 + 1. Since
x = qub, we have |r| > qu > qP~! + ¢, better than wanted. O

Remark 2.5. — This version of Hyyr6’s argument is due to Mignotte and Bugeaud.
It was kindly communicated to me by Yann Bugeaud. Using more advanced tools,
Mihiilescu [30, Appendix A] obtained a much sharper estimate |z| > (¢*~2/ 2)4.
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3. ALGEBRAIC CRITERIA

Using Cassels’ relations and some algebraic number theory, one may get various
algebraic criteria of solvability of Catalan’s equation with given exponents p and gq.
The most famous criterion is due to Inkeri [16,17]:

THEOREM 3.1 (Inkeri). — With the notation of Subsection 1.1, put K, = Q(\/—p)
if p=3mod4 and K, = K if p=1mod4. Then either p?~* = 1mod¢? or q divides
the class number of the field K. O

It will be explained in Subsection 4.4 how algebraic criteria of this kind, together
with electronic computations, allow one to obtain lower bounds for p and gq.

Refinements of and supplements for Inkeri’s criterion were suggested by Mignotte
[25], Schwarz [35] and others; see [26] for a survey of these results. I would es-
pecially mention the paper by Bugeaud and Hanrot [11], which strongly influenced
Mihailescu’s work.

Verification of Inkeri’s criterion for a given pair (p,q) requires computing certain
class numbers, which seriously affects its computational efficiency. Mihdilescu [29]
made a major step forward, showing that the class number condition can be omitted.

THEOREM 3.2 (Mihailescu). — For any solution of (x,y,p,q) of (2) we have ¢*|x
and

9) p?™! = 1mod ¢*.

Congruence (9) (called Wieferich’s relation) will be used in Section 4 to prove that
p # 1mod q. Relation ¢?|x is crucial in the proof of Theorem 6.3.2.

By symmetry, one has ¢P~! = 1mod p?. Pairs (p,q), satisfying this and (9) are
called double Wieferich pairs. Only six such pairs are currently known:

(2,1093), (3, 1006003), (5, 1645333507), (83, 4871), (911, 318917), (2903, 18787).

I sketch the proof of Theorem 3.2, because it is very instructive and can serve as a
good model of the much more involved proof of Theorem 1.3. See [24,33] for different
proofs.

3.1. Proof of Theorem 3.2

For a € {1,2,...,p— 1} let o, be the element of G = Gal(K/Q) be defined by
¢ — ¢*. In the group ring Z[G] consider elements
1

Q.= Y lac/plo?t (c=1,2,...,p—1).
1

hS]
|

In particular, ©1 =0 and ©2 = 0(p41)/2 + -+ 0p_1. Ideal T = (01,02,...,0, 1)
of Z[G] is called the Stickelberger ideal. Its main property is the Stickelberger theorem:
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