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Abstract. — For partially hyperbolic diffeomorphisms with 2-dimensional center, ac-
cessibility is C1-stable. Moreover, for center bunched skew-products (stable) accessi-
bility is C∞-dense.

Résumé (Accessibilité stable de dimension centrale 2). — L’accessibilité est une propriété
C1-stable parmi les difféomorphismes partiellement hyperboliques à dimension
centrale 2. De plus, l’accessibilité (stable) est une propriété C1-dense dans le
domaine des produits gauches satisfaisant la condition de regroupement central
(‘center bunching’).

1. Introduction

A diffeomorphism f : M → M of a compact manifold M is partially hyperbolic
if there exist: a continuous splitting of the tangent bundle TM = Eu ⊕ Ec ⊕ Es

invariant under the derivative Df (all three sub-bundles are assumed to have positive
dimension); a Riemannian metric ‖ · ‖ on M ; and positive continuous functions ν, ν̂,
γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1, such that

(1)

‖Df(p)v‖ < ν(p) if v ∈ Es(p),

γ(p) < ‖Df(p)v‖ < γ̂(p)
−1 if v ∈ Ec(p),

ν̂(p)
−1

< ‖Df(p)v‖ if v ∈ Eu(p)

for any unit vector v ∈ TpM . This is an open property in the space of C1 diffeomor-
phisms. We will denote d∗ = dimE∗, for ∗ ∈ {u, c, s}, and d = dimM .
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The stable bundle Es and the unstable bundle Eu are uniquely integrable and
their integral manifolds form two quasi transverse continuous foliations, Wu = Wu

f

and Ws = Ws
f , whose leaves are immersed submanifolds of the same class of differ-

entiability as f . These are called the strong unstable and strong stable foliations of f .
They are invariant under f , in the sense that f(W∗(x)) = W∗(f(x)) for any x ∈ M
and ∗ ∈ {u, s}. Given ε > 0 and ∗ ∈ {u, s}, we represent by W∗

ε (x) = W∗
f,ε(x) the

ε-neighborhood of x inside W∗(x).
Given two points x, y ∈ M , we say that x is accessible from y if there exists a

C1 path that connects x to y and is tangent at every point to the union Eu ∪ Es.
The equivalence classes of this (equivalence) relation are called f -accessibility classes.
The diffeomorphism f is called accessible if there exists a unique f -accessibility class,
namely, the ambient M . Moreover, f is called stably accessible if it admits a C1

neighborhood U such that every C2 diffeomorphism g ∈ U is accessible.
For any k ≥ 1, we denote by PHk the space of Ck partially hyperbolic diffeo-

morphisms in M . Most of our results concern the subspace PHk
2 of diffeomorphisms

f ∈ PHk with 2-dimensional center bundle, that is, such that dc = 2.

Theorem A. — If f ∈ PH 1
2 is accessible then f is stably accessible.

We say that an f -accessibility class C is stable if for every compact set K ⊂ C

there exists a C1 neighborhood U = UK of f such that K is contained in a unique
g-accessibility class for every C2 diffeomorphism g ∈ U . In particular, f is stably
accessible if, and only if, the ambient M is a stable f -accessibility class.

Stable accessibility classes are open sets. Indeed, let p and q be two distinct points
in C (for instance, in the same stable manifold). For any r ∈M close to q, let h : M →
M be a diffeomorphism C∞ close to the identity, such that h(p) = p and h(r) = q.
Then g = h ◦ f ◦ h−1 is close to f . Taking K = {p, q}, the assumption implies that p
and q are in the same g-accessibility class. This means that p and q are in the same
f -accessibility class, that is, r ∈ C. So, C contains a whole neighborhood of q.

Here we prove that the converse is also true, at least when the center bundle is
2-dimensional:

Theorem B. — If f ∈ PH 1
2 then any open f -accessibility class is stable.

Theorem A is a direct consequence of Theorem B. The main technical step in the
proof of Theorem B is a result on approximation of general paths in accessibility
classes by a certain class of paths for which a continuation exists for every nearby
diffeomorphism. This result is stated in Section 4 (Theorem 4.1), where we also explain
how it leads to Theorem B.

In Sections 6–5 we state and prove a result about density of stable accessibility
(Theorem 6.1), for a class of fibered partially hyperbolic diffeomorphisms with 2-di-
mensional center bundle. It contains a claim made in Section 7 of our paper [2], that
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was used for proving Theorem H in that paper. After our research had been com-
pleted, we learned from V. Horita and M. Sambarino that they had independently
obtained a similar result, in a paper that appeared in [8].

When the center dimension dc = 1, the accessibility property is always stable [5].
The present work extends that fact to center dimension equal to 2. Recently, and
also in the 2-dimensional case, J. Rodriguez-Hertz and C. Vasquez [13] proved that
accessibility classes are immersed submanifolds, which implies Theorem A.

When the center bundle is one-dimensional, the (stable) accessibility property is
known to be Cr dense among partially hyperbolic diffeomorphisms [3, 12]. Without
any hypothesis on the dimension of the central bundle, Dolgopyat and Wilkinson [6]
proved that stable accessibility is C1 dense.

2. Deformations paths

In this section, all maps are assumed to be C1 and proximity is always meant in the
C1 topology. We introduce a class of paths, that we call deformation paths, contained
in accessibility classes and having a useful property of persistence under variation of
the diffeomorphism and the base point. This also provides a kind of parametrization
for accessibility classes:

Theorem 2.1. — For every f ∈ PH 1, there exist k ≥ 1, a neighborhood V of f and a
sequence Pl : V×M ×Rk(du+ds)l →M of continuous maps such that, for any g ∈ V,

1. Pm(g, · , w) ◦ Pl(g, · , v) = Pl+m(g, · , (v, w)) for every l ≥ 1 and m ≥ 1 and
v ∈ Rk(du+ds)l and w ∈ Rk(du+ds)m;

2. ζ 7→ Pl(g, ζ, v) is a homeomorphism from M to M , with Pl(g, ·, 0) = id, for
every l ≥ 1 and v ∈ Rk(du+ds)l;

3.
⋃
n≥1 Pn({(g, z)} × Rk(du+ds)n) is the g-accessibility class of each z ∈M .

A deformation path based on (f, z) is a (continuous) map γ : [0, 1] → M such
that there exist l ≥ 1 and a continuous map Γ : [0, 1] → Rk(du+ds)l satisfying
γ(t) = Pl(f, z,Γ(t)). Notice that any deformation path based on (f, z) is contained in
the f -accessibility class of z. It follows immediately from the definition that deforma-
tion paths are persistent, in the following sense:

Corollary 2.2. — If γ : [0, 1] → M is a deformation path based on (f, z) then, for
any g close to f and any w close to z, there exists a deformation path based on (g, w)

that is uniformly close to γ.

In the remainder of this section we prove Theorem 2.1. Let I = [−1, 1]. We need
the following particular case of [7, Theorem 4.1]:

Lemma 2.3. — For every f ∈ PH 1 and ζ ∈ M , there exists a neighborhood V of f
and a continuous map ψ = ψf,ζ : V × Id →M such that for every g ∈ V,

1. ψ(g, 0) = ζ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



304 A. AVILA & M. VIANA

2. x 7→ ψ(g, x) is a homeomorphism,

3. ψ(g, x, y) ∈Wu
g (ψ(g, 0, y)) for every x ∈ Idu and y ∈ Id−du .

Lemma 2.4. — For every f ∈ PH 1 there exist a neighborhood V of f , numbers k ≥ 1

and ε > 0 and continuous maps Φu : V×M×Rkdu →M and Φs : V×M×Rkds →M

such that:

1. x 7→ Φu(g, x, v) is a homeomorphism, for every g ∈ V and v ∈ Rkdu ;

2. Wu
g,ε(x) ⊂ Φu({g} × {x} × Rkdu) ⊂Wu

g (x) for every g ∈ V and x ∈M ,

and analogously for Φs.

Proof. — We will only go through the details of the construction of Φu, the case
of Φs being analogous. Let ht : I → I be the flow satisfying (dht/dt)(x) = 1− ht(x)2.
Let H : Id → I be given by H(v) = (1−v2

du+1) . . . (1−v2
d). For v ∈ Rdu , let hv : Id →

Id be given by

hv(x) =
(
hH(x)v1(x1), . . . , hH(x)vdu

(xdu), xdu+1, . . . , xd
)
.

Pick points ζi ∈ M , 1 ≤ i ≤ k so that the interiors of the images ψi({f} × Id)

cover M , where ψi = ψf,ζi
: Vi × Id → M are the maps given by Lemma 2.3.

Let V be a neighborhood of f contained in
⋂
i Vi and ε be a positive number such

that for every g ∈ V and z ∈M there exist i and y such that

Wu
g,ε(z) ⊂ ψi

(
{g} × inter(Idu)× {y}

)
.

Let Φi : V ×M × Rdu →M be given by

Φi(g, ψi(g, ζ), v) = ψi(g, hv(ζ)) for ζ ∈ Id

Φi(g, z, v) = z if z /∈ ψi({g} × Id).

Then define Φ(i) : V ×M × Ridu →M , 1 ≤ i ≤ k by

Φ(1) = Φ1 and Φ(i+1)(g, · , (wi, w)) = Φi+1(g, · , w) ◦ Φ(i)(g, ·, wi)

and take Φu = Φ(k). Claim (1) follows from part (2) of Lemma 2.3, by composition.
The lower bound in claim (2) follows from the choice of ε and the upper bound is a
consequence of part (3) of Lemma 2.3.

Proof of Theorem 2.1. — Define Pl : V ×M × Rk(du+ds)l →M , l ∈ N by letting

P1(g, · , (wu, ws)) = Φs(g, · , ws) ◦ Φu(g, · , wu)

for wu ∈ Rkdu and ws ∈ Rkds and

Pl(g, · , (w1, . . . , wl)) = P1(g, · , wl) ◦ · · · ◦ P1(g, · , , w1)

for w1, . . . , wl ∈ Rk(du+ds). Property (1) in Theorem 2.1 is a direct consequence of this
definition. Property (2) follows from part (2) of Lemma 2.3, by composition. Finally,
Lemma 2.4 gives that

⋃
n≥1 Pn(g, z,Rk(du+ds)n) is the g-accessibility class of z, as

claimed in part (3) of the theorem.
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