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1. INTRODUCTION

Suppose that a countable group G acts freely and ergodically on the standard

probability space (X,µ) preserving the probability measure µ. We are interested in

several types of ‘isomorphisms’ between such actions. Two actions are said to be

(1) conjugate if there exist a group isomorphism and a measure space isomorphism

satisfying the obvious conjugacy formula;

(2) orbit equivalent if there exists a measure space isomorphism sending orbits to

orbits, i.e., the equivalence relations given by the orbits are isomorphic;

(3) von Neumann equivalent if the crossed product von Neumann algebras are

isomorphic.
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Note that the crossed product construction(1) has been introduced by Murray and von

Neumann [41], who called it the group measure space construction.

It is clear that conjugacy of two actions implies orbit equivalence. Since the crossed

product von Neumann algebra can be defined directly from the equivalence relation

given by the orbits, orbit equivalence implies von Neumann equivalence. Rigidity

results provide the converse implications for certain actions of certain groups. This

is a highly non-trivial matter. Dye [16, 17] proved that all free ergodic measure

preserving actions of groups with polynomial growth on the standard probability space

are orbit equivalent. This result was extended to all amenable groups by Ornstein

and Weiss [45]. Finally, Connes, Feldman and Weiss [10] showed that every ergodic

amenable probability measure preserving countable equivalence relation is generated

by a free Z-action and is hence unique. Summarizing, for amenable group actions

all information on the group, except its amenability, gets lost in the passage to the

equivalence relation.

Concerning the relation between orbit equivalence and von Neumann equivalence, it

was noted by Feldman and Moore [19] that the pair L∞(X,µ) ⊂ L∞(X,µ) ⋊G remem-

bers the equivalence relation. The abelian subalgebra L∞(X,µ) is a so-called Cartan

subalgebra. So, in order to deduce orbit equivalence from von Neumann equivalence,

we need certain uniqueness results for Cartan subalgebras, which is an extremely hard

problem. Connes and Jones [12] gave the first examples of non orbit equivalent, yet

von Neumann equivalent actions.

In this talk, we discuss Popa’s recent breakthrough rigidity results for Bernoulli

actions(2) of Kazhdan groups. These results open a new era in von Neumann algebra

theory, with striking applications in ergodic theory. The heart of Popa’s work is

his deformation/rigidity strategy: he discovered families of von Neumann algebras

with a rigid subalgebra but yet with just enough deformation properties in order for

the rigid part to be uniquely determined inside the ambient algebra (up to unitary

conjugacy). This leads to far reaching classification results for these families of von

Neumann algebras. Popa considered the deformation/rigidity strategy for the first

time in [54]. In [52], he used it to deduce orbit equivalence from mere von Neumann

equivalence between certain group actions and to give the first examples of II1 factors

with trivial fundamental group, through an application of Gaboriau’s ℓ2 Betti numbers

of equivalence relations [22]. Deformation/rigidity arguments are again the crucial

ingredient in the papers [48, 55, 56, 53] that we discuss in this talk and they are

applied in [29], in the study of amalgamated free products. These ideas may lead to

(1)The crossed product von Neumann algebra L∞(X, µ)⋊G contains a copy of L∞(X, µ) and a copy

of the group G by unitary elements in the algebra, and the commutation relations between both are

given by the action of G on (X, µ).
(2)Every discrete group G acts on (X, µ) =

Q

g∈G(X0, µ0), by shifting the Cartesian product. Here

(X0, µ0) is the standard non-atomic probability space and the action is called the Bernoulli action

of G.
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many more applications in von Neumann algebra and ergodic theory (see e.g. the new

papers [28, 58] written since this talk was given).

In the papers discussed in this talk, the rigidity comes from the group side and is

given by Kazhdan’s property (T) [15, 36] and more generally, by the relative property

(T) of Kazhdan-Margulis (see [26] and Valette’s Bourbaki seminar [63] for details): the

groups dealt with contain an infinite normal subgroup with the relative property (T)

and are called w-rigid groups. Popa discovered a strong deformation property shared

by the Bernoulli actions, and called it malleability. In a sense, a Bernoulli action can

be continuously deformed until it becomes orthogonal to its initial position. In order

to exploit the tension between the deformation of the action and the rigidity of the

group, yet another technique comes in. Using bimodules (Connes’ correspondences),

Popa developed a very strong method to prove that two subalgebras of a von Neumann

algebra are unitarily conjugate. Note that he used this bimodule technique in many

different settings, see [29, 46, 55, 56, 52, 51].

The following are the two main results of [48, 55, 56] and are discussed below. The

orbit equivalence superrigidity theorem states that the equivalence relation given by

the orbits of a Bernoulli action of a w-rigid group, entirely remembers the group and

the action. The von Neumann strong rigidity theorem roughly says that whenever a

Bernoulli action is von Neumann equivalent with a free ergodic action of a w-rigid

group, the actions are actually conjugate. It is the first theorem in the literature

deducing conjugacy of actions out of von Neumann equivalence. The methods and

ideas behind these far reaching results are fundamentally operator algebraic and yield

striking theorems in ergodic theory.

Some important conventions

All probability spaces in this talk are standard. All actions of countable groups G

on (X,µ) are supposed to preserve the probability measure µ. All statements about

elements of (X,µ) only hold almost everywhere. A w-rigid group is a countable group

that admits an infinite normal subgroup with the relative property (T).

Orbit equivalence superrigidity

In [48], the deformation/rigidity technique leads to the following orbit equivalence

superrigidity theorem.

Theorem (Theorem 4.4). — Let G y (X,µ) be the Bernoulli action of a w-rigid

group G as above. Suppose that G does not have finite normal subgroups. If the

restriction to Y ⊂ X of the equivalence relation given by G y X is given by the orbits

of Γ y Y for some group Γ acting freely and ergodically on Y , then, up to measure

zero, Y = X and the actions of G and Γ are conjugate through a group isomorphism.
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The theorem implies as well that the restriction to a Borel set of measure

0 < µ(Y ) < 1, of the Bernoulli action of a w-rigid group G without finite normal

subgroups, yields an ergodic probability measure preserving countable equivalence

relation that cannot be generated by a free action of a group. The first examples

of this phenomenon – answering a question of Feldman and Moore – were given by

Furman in [21]. Dropping the ergodicity, examples were given before by Adams in [1],

who also provides examples in the Borel setting.

Popa proves the orbit equivalence superrigidity for the Bernoulli action of G on X

using his even stronger cocycle superrigidity theorem: any 1-cocycle for the action

G y X with values in a discrete group Γ is cohomologous to a homomorphism of

G to Γ. The origin of orbit equivalence rigidity and cocycle rigidity theory lies in

Zimmer’s pioneering work. Zimmer proved in [66] his celebrated cocycle rigidity

theorem and used it to obtain the first orbit equivalence rigidity results (see Section 5.2

in [67]). Since Zimmer’s theorem deals with cocycles taking values in linear groups,

he obtains orbit equivalence rigidity results where both groups are assumed to be

linear (see [68]). Furman developed in [20, 21] a new technique and obtains an orbit

equivalence superrigidity theorem with quite general ergodic actions of higher rank

lattices on one side and an arbitrary free ergodic action on the other side. Note

however that Furman’s theorem nevertheless depends on Zimmer’s cocycle rigidity

theorem. We also mention the orbit equivalence superrigidity theorems obtained by

Monod and Shalom [39] for certain actions of direct products of hyperbolic groups.

An excellent overview of orbit equivalence rigidity theory can be found in Shalom’s

survey [61].

Zimmer’s cocycle rigidity theorem was a deep generalization of Margulis’ seminal

superrigidity theory [38]. In particular, the mathematics behind involve the theory of

algebraic groups and their lattices. On the other hand, Popa’s technique to deal with

1-cocycles for Bernoulli actions is intrinsically operator algebraic.

As stated above, Popa uses his powerful deformation/rigidity strategy to prove the

cocycle superrigidity theorem. Leaving aside several delicate passages, the argument

goes as follows. A 1-cocycle γ for the Bernoulli action G y X of a w-rigid group G,

can be interpreted in two ways as a 1-cocycle for the diagonal action G y X × X ,

either as γ1, only depending on the first variable, either as γ2, only depending on

the second variable. The malleability of the Bernoulli action (this is the deformation

property) yields a continuous path joining γ1 to γ2. The relative property (T) implies

that, in cohomology, the 1-cocycle remains essentially constant along the continuous

path. This yields γ1 = γ2 in cohomology and the weak mixing property allows to

conclude that γ is cohomologous to a homomorphism.

Let (σg) be the Bernoulli action of a w-rigid group G on (X,µ). Popa’s cocycle

superrigidity theorem covers his previous result [54, 57] identifying the 1-cohomology

group H1(σ) with the character group CharG. This result allows to compute as
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well the 1-cohomology for quotients of Bernoulli actions, yielding the following result

of [53].

Theorem (Theorem 5.3). — Let G be a w-rigid group. Then, G admits a continuous

family of non-stably(3) orbit equivalent actions.

Note that Popa does not only prove an existence result, but explicitly exhibits

a continuous family of mutually non orbit equivalent actions. The existence of a

continuum of non orbit equivalent actions of an infinite property (T) group had been

established before in a non-constructive way by Hjorth [27], who exhibits a continuous

family of actions such that every action in the family is orbit equivalent to at most

countably many other actions of the family.

Finally note that the first concrete computations of 1-cohomology for ergodic group

actions are due to Moore [40] and Gefter [23].

Von Neumann strong rigidity

The culmination of Popa’s work on Bernoulli actions is the following von Neumann

strong rigidity theorem of [56]; it is the first theorem in the literature that deduces

conjugacy of the actions from isomorphism of the crossed product von Neumann

algebras.

Theorem (Theorem 9.1). — Let G be a group with infinite conjugacy classes and

G y (X,µ) its Bernoulli action as above. Let Γ be a w-rigid group that acts freely

and ergodically on (Y, η). If

θ : L∞(Y ) ⋊ Γ → p(L∞(X) ⋊G)p

is a ∗-isomorphism for some projection p ∈ L∞(X)⋊G, then p = 1, the groups Γ and

G are isomorphic and the actions of Γ and G are conjugate through this isomorphism.

Note that in the conditions of the theorem, there is an assumption on the action

on one side and an assumption on the group on the other side. As such, it is not

a superrigidity theorem: one would like to obtain the same conclusion for any free

ergodic action of any group Γ and for the Bernoulli action of a w-rigid ICC group G.

Another type of von Neumann rigidity has been obtained by Popa in [52, 51],

deducing orbit equivalence from von Neumann equivalence. We just state the following

particular case. Consider the usual action of SL(2,Z) on T2. Whenever a free and

ergodic action of a group Γ with the Haagerup property is von Neumann equivalent

with the SL(2,Z) action on T2, it actually is orbit equivalent with the latter. One

should not hope to deduce a strong rigidity result yielding conjugacy of the actions:

Monod and Shalom ([39], Theorem 2.27) proved that any free ergodic action of the

(3)See Definition 4.2.
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