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INTRODUCTION

The bilinear Hilbert transform is the operator

(1) BH(f1, f2)(x) =

∫

R
f1(x− t)f2(x+ t) t−1dt

where x, t ∈ R and fj ∈ Lpj (R). If t−1 were an integrable function then this integral

would become absolutely convergent, for almost every x for appropriate exponents pj .

The question of the finiteness of the conditional integral, and of inequalities in Lp

norms, was an open problem from roughly the mid-1960’s to the late 1990’s, when

Michael Lacey and Christoph Thiele showed in a series of breakthrough papers that

BH is well-defined and bounded on appropriate Lp spaces. This operator is prototyp-

ical for a class of multilinear operators with modulation symmetry, and their work has
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been followed by significant further developments too numerous to cite in the space

available.

In this expository article I discuss the background and origins of the problem, out-

line the main lines of the analysis, and indicate the connection with the almost every-

where convergence of Fourier integrals. This article is not intended as an exhaustive

survey, but merely as an introduction to the main ideas of the original articles [21–23].

I deliberately focus on one particular operator in order to emphasize what I consider

to be the main concepts.

1. HISTORICAL BACKGROUND

1.1. Singular integrals

The most fundamental example of a Calderón-Zygmund singular integral operator

is the Hilbert transform Hf(x) = π−1
∫

R f(x − t) t−1 dt for x ∈ R. The integral fails

to converge absolutely in general, and is defined as the limit as ε→ 0 of the integral

over |t| > ε.

H plays a fundamental role in the theory of convergence of the Fourier transform,

as well as in one-dimensional complex analysis. It satisfies Ĥf(ξ) = i sgn(ξ)f̂ (ξ) for

all ξ 6= 0, where sgn(ξ) = ±1 according to whether ξ > 0 or < 0. Thus P = 1
2 (I−iH),

where I is the identity, is the projection operator onto positive frequencies: P̂ f(ξ) =

f̂(ξ)χξ>0. The “partial sum” operators P̂Nf(ξ) = f̂(ξ)χ|ξ|≤N can be synthesized

out of P together with shifts of the Fourier variable, in such a way that uniform

boundedness of PN on Lp is equivalent to boundedness of H on Lp. This is the basis

of the classical theorem of M. Riesz on Lp norm convergence of Fourier series.

Somewhat more general CZ operators can be expressed as Fourier multiplier oper-

ators

(2) T̂ f(ξ) = m(ξ)f̂ (ξ) where m(rξ) ≡ m(ξ) for all r > 0

and m ∈ C∞(Rd \ {0}). General Fourier multipliers T̂ f(ξ) = m(ξ)f̂(ξ) with m ∈ L∞

preserve Lp(R) only for p = 2; there is no characterization of Lp functions in terms

of the absolute values of their Fourier coefficients for p 6= 2.

The most general Calderón-Zygmund operators in Rd lack convolution structure,

taking the form
∫

Rd K(x, y)f(y) dy where

(3) |K(x, y)| ≤ C|x− y|−d and |∇x,yK| ≤ C|x− y|−d−1;

again I slur over the issue of interpretation of this typically absolutely divergent

integral. Roughly speaking, (3) says that the portions of f, g microlocalized in phase

space near (x, ξ) and (x′, ξ′) respectively interact quite weakly unless |ξ| + |ξ′| ≤
C|x − x′|−1. According to the uncertainty principle, any stronger restriction of this
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general type is meaningless. A basic theorem [5] states that if such an operator is

bounded on L2, then it is also bounded on Lp for all p ∈ (1,∞).

The basic symmetries of this theory are translation and dilation; if K(x, y) is a

Calderón-Zygmund kernel then so are K(x− z, y− z) and rdK(rx, ry), uniformly for

all r > 0 and z ∈ Rd. The individual operators need not exhibit these symmetries,

but the class as a whole does.

A third basic symmetry, with respect to modulation, is totally lacking in this theory.

Multiplying K(x, y) by ei(ax+by) for any nonzero (a, b) ∈ R2 destroys the bound on

∇K. This lack of symmetry is perhaps even more apparent in (2), in the convolution

case K(x − y), where ξ = 0 plays a privileged role. Of course, such a modulation

does not affect Lp estimates, but as we will see, the bilinear Hilbert transform can be

regarded as an infinite sum of modulated Calderón-Zygmund operators with different

modulating frequencies, in such a way that boundedness of the sum cannot easily be

inferred by summing bounds for the individual summands.

1.2. Calderón’s commutator

Calderón had an abiding interest in partial differential equations with nonsmooth

coefficients and on nonsmooth domains. He had employed algebras of singular integral

operators in studying PDE, for instance in his work on uniqueness in the Cauchy

problem [2]. Thus he was naturally led to investigate compositions of operators such

as the canonical exampleH , the operatorMA of multiplication by a function A having

limited smoothness, and d
dx . He showed in 1965 [3] that the commutator [H,MA] is

smoothing, in the sense that CA = d
dx ◦ [H,MA] is bounded on L2(R1), whenever A

is Lipschitz continuous, that is, whenever a = dA/dx ∈ L∞. Formally

(4) CAf(x) =

∫

R
f(y)

A(x) −A(y)

(x− y)2
dy,

which satisfies the Calderón-Zygmund assumptions (3) when a = dA
dx belongs to L∞.

These operators possess translation and dilation invariance as a family, even though

individually they lack it.

Since the commutator operator is not translation-invariant, Plancherel’s theorem

can not be invoked directly to establish its L2 boundedness. A key realization of

Calderón was that it could profitably be regarded as a bilinear operator, and that

the full force of Fourier analysis and complex variables methods should be brought to

bear on a.

An intriguing alternative expression is obtained by writing A(x) −A(y) = (x − y)∫ 1

0
a(sx+ (1 − s)y) ds to obtain a decomposition CA(f) =

∫ 1

0
Cs(f, a) ds where

(5) Cs(f, a)(x) =

∫

R
f(x− t)a(x+ st)t−1 dt.

Thus bounds for Cs from L2 × L∞ to L2 would imply corresponding bounds for the

commutator operator. The special case C1 is traditionally called the bilinear Hilbert
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transform, but all the operators Cs for s 6= 0,−1 have essentially the same intrinsic

qualities and stature. Calderón asked(1) whether these operators do map L2 × L∞

to L2. The problem became notorious, but was not resolved until the work of Lacey

and Thiele [21, 22] in the late 1990s.

Thought of as linear operators acting on f , Cs have nonsmooth kernels K(x, y) =

(x − y)−1a(xs + (1 − s)y) which satisfy no gradient estimate. Viewed as bilinear

operators, they are singular in the sense that Cs(f, a)(x) depends on a(y1)f(y2) only

for (y1, y2) in a one-dimensional subset of R2.

It is remarkable that these building blocks Cs not only retain translation and dila-

tion symmetry, but gain new modulation symmetries: defining Mηf(x) = eixηf(x),

(6) Cs(Msηf,Mηa) ≡ M(1+s)ηCs(f, a).

These are partial symmetries; there is no relation for Cs(Mηf,Mη̃a) unless sη = η̃.

In terms of the Fourier transform the operator is written

(7) Cs(f, a)(x) = c

∫∫
eix(ξ1+ξ2) sgn(sξ2 − ξ1)f̂(ξ1)â(ξ2) dξ1 dξ2

for a certain constant c, and the modulation symmetry is reflected in the invariance of

the Fourier multiplier sgn(sξ2−ξ1) under ξ 7→ ξ+(sη, η). This multiplier is nonsmooth

along an entire line, rather than merely at the origin.

It is (perhaps) a general principle that more symmetric operators are more difficult

to analyze; a featureless wall presents no cracks which can naturally be enlarged into

gaps. A fundamental point to look for in the discussion below is how the symmetry

is broken; see §5.

1.3. Carleson’s maximal operator

Carleson [6] proved in 1966 that for any periodic function f ∈ L2 of one real

variable, the partial sums of the Fourier series converge to f almost everywhere. The

essentially equivalent statement for the real line is that (2π)−1
∫
|ξ|≤N

f̂(ξ)eixξ dξ

converges to f(x) as N → ∞, for almost every x ∈ R. The main ingredient is

an estimate for Carleson’s maximal operator C⋆f(x) = supN<∞
∣∣ ∫
|ξ|≤N f̂(ξ)eixξ dξ

∣∣,
which is essentially the same as

(8) C∗f(x) = sup
N∈R

∣∣∣
∫

R
f(x− t)eiNtt−1 dt

∣∣∣.

Carleson proved that C∗ maps L2 to weak L2, that is, |{x : C∗f(x) > λ}| ≤ Cλ−2‖f‖2
L2

uniformly for all λ > 0 and f ∈ L2. Almost everywhere convergence follows immedi-

ately from this inequality since it holds trivially for functions whose Fourier transforms

have compact support.

(1)The question is widely attributed to Calderón, though I know of no reference.
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It is equivalent to establish bounds for the linear operators
∫

R f(x− t)eiN(x)t t−1 dt

which are uniform over all measurable real-valued selection functions N . Once again

these operators enjoy forms of translation, dilation, and modulation invariance. For

instance, L(Mηf)(x) = MηL′f(x), where L′ is obtained from L by replacing the

function N(x) by N(x) − η.

Fefferman [17] later gave a second proof of Carleson’s theorem. Lacey and Thiele

used elements of both of these analyses to prove(2)

Theorem 1.1. — Let p1, p2, q ∈ (1,∞] satisfy q−1 = p−1
1 + p−1

2 , and assume that

no more than one of these exponents is infinite. Then there exists C < ∞ such that

‖BH(f1, f2)‖Lq ≤ C‖f1‖Lp1‖f2‖Lp2 for all Schwartz class functions.

1.4. Two roads diverge

Calderón proved the bound he sought for the commutator operator without un-

derstanding the bilinear Hilbert transform, and went on to analyze [4] the Cauchy

integral associated to Lipschitz curves with small Lipschitz constant by an extension

of those ideas. Further developments have included a vast literature on elliptic bound-

ary problems on Lipschitz domains, analytic capacity in one complex variable [27], the

work of Coifman-Meyer-Mcintosh [9] on the Cauchy integral, and the T (1) theorem of

David and Journé [13]. A theory of multilinear Calderón-Zygmund singular operators

was developed [10, 12], which however does not include Cs; it encompasses operators

which have a Fourier representation like (7) with sgn(sξ2 − ξ1) replaced by functions

smooth away from ξ = 0 and satisfying m(rξ) ≡ m(ξ) for r > 0. These operators lack

modulation invariance, and are less singular. Some of that theory provides essential

building blocks for the analysis outlined here.

2. LOCALIZED FOURIER COEFFICIENTS

2.1. A frame with a preferred scale

Let ψ : R1 → C be an infinitely differentiable function supported in (0, 2) such that∑
n∈Z ψ(t− n) ≡ 1 for all t ∈ R. Then the set of all functions {ψk,n = eiktψ(t− n) :

k, n ∈ Z} is a frame for L2(R1); for any f ∈ L2,

(9) f = c
∑

k,n

ψk,n〈f, ψk,n〉

for a certain constant c whose precise value is of no consequence for the type of

inequality in question here. The inverse Fourier transform of ψ is a Schwartz function,

and multiplying it by (2π)−1/2 yields a function ϕ such that {ϕk,n(x) = einxϕ(x −
k)} is likewise a frame for L2. It is good intuition to think of ϕk,n(x) as being

(2)Their theorem actually applies for all q > 2
3
.
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