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PROJECTIVITY OF KÄHLER MANIFOLDS –

KODAIRA’S PROBLEM

[after C. Voisin]

by Daniel HUYBRECHTS

There are various geometric structures that can be studied on a topological mani-

fold M . Depending on one’s geometric taste, it is important to know whether M can

be endowed with a symplectic form, whether (special) Riemannian metrics can be

found or whether M carries an algebraic structure. Often, the existence of a certain

geometric structure imposes topological conditions on M . In other words, it may

happen that a given topological manifold does simply not allow one’s favorite geo-

metry. E.g. if M is compact and b2(M) = 0 the manifold M cannot be symplectic,

or if b1(M) = 1 no Kähler metrics can exist.

In order to fully understand the relation between two sorts of geometries, it is

important to know whether they impose the same topological obstructions. In other

words, does the existence of one of the two on a given manifold topological M imply

the existence of the other one? This is a report on the work of Claire Voisin [13, 14]

that sheds light on an old question, usually attributed to Kodaira, that asks for the

topological relation between Kähler geometry and projective geometry.

In the following we let M be a compact manifold that can be endowed with the

structure of a complex manifold. Once a complex structure is chosen, one studies

Riemannian metrics g that are ‘compatible’ with it. One possible compatibility con-

dition is to require that g be hermitian, i.e., that the complex structure thought of as

an almost complex structure I is orthogonal with respect to g. It is not difficult to see

that a hermitian structure can always be found. It is, however, a completely different

matter to find a hermitian structure g such that its fundamental form ω := g(I , )

is closed, i.e., g satisfies the Kähler condition. Indeed, the classical theory of Kähler

manifolds shows that the existence of a Kähler metric imposes strong conditions on

the topology of M , which are not satisfied by arbitrary complex or symplectic mani-

folds. For instance, the odd Betti numbers of a compact Kähler manifold are even,

Kähler manifolds are formal and their fundamental groups satisfy further conditions.

(In contrast, if only one of the two structures, complex or symplectic, is required,

then any finitely presentable group can be realized.)
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On the other hand, Kähler manifolds are quite common. Indeed, any complex sub-

manifold of the complex projective space Pn admits a Kähler metric - the restriction

of the Fubini–Study metric is an example. Conversely, one might wonder whether a

compact complex manifold that admits a Kähler structure can always be realized as

a complex submanifold of Pn or, in other words, whether the complex structure is

projective. This is obviously not the case, general complex tori Cn/Γ (n ≥ 2) and

general K3 surfaces provide counter-examples. In fact, a famous theorem of Kodaira

proves that a Kähler manifold is projective if and only if the Kähler metric can be

chosen such that the cohomology class of its fundamental form ω is integral, i.e.,

[ω] ∈ H2(X,Z) (see [6, Thm. 4]).

In these examples one observes that although the given complex structure is not

projective, it becomes projective after a small deformation. Kodaira proved that in

fact any Kähler surface can be deformed to a projective surface (see [7, Thm. 23]

and [8]). Thus, as deforming the complex structure does not change the diffeomor-

phism type of the manifold, there is no topological difference between compact Kähler

surfaces and algebraic surfaces. (Let us also mention that in fact any compact sur-

face X with even b1(X) is Kähler, i.e., for surfaces the condition to be Kähler is a

topological condition. This fails in higher dimensions, due to a famous example of

Hironaka [5] of a compact Kähler manifold that deforms to complex manifold which

is no longer Kähler.) Note in passing that a similar result holds true for symplectic

manifolds: clearly, any given symplectic form ω can be deformed to a symplectic form

with integral cohomology class.

Kodaira’s problem, which apparently has never been stated by himself in this form,

asks for the higher-dimensional version of his result: Can any compact Kähler manifold

be deformed to a projective manifold?

More in the spirit of the general philosophy explained above, one could ask whether

the topological manifold underlying a compact Kähler manifold may also be endowed

with the structure of a projective manifold. This question had been open for a very

long time. As Kodaira’s arguments to prove the two-dimensional case use a great deal

of classification theory of surfaces, there was little hope to generalize them to higher

dimensions.

Recent work of Claire Voisin fills this gap [11, 13, 14]. She succeeded in showing

that topology makes a difference between compact Kähler manifolds and those that

are projective. In other words, there exist compact topological manifolds that admit

the structure of a Kähler manifold without carrying also the structure of a projective

manifold. More precisely, Voisin shows the stronger statement:

Theorem 0.1 ([13]). — In any dimension ≥ 4 there exists a compact Kähler

manifold X whose rational cohomology ring H∗(X,Q) cannot be realized as the

rational cohomology ring of a projective manifold.
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Voisin originally worked with the integral cohomology ring H∗(X,Z), but Deligne

then pointed out the stronger version above.

One could wonder whether the answer to these questions would be different if

the topological manifold satisfies further conditions, e.g. if it is in addition simply-

connected. Some of these questions have been addressed and answered by Voisin

in [13, 14] and we will comment on them on the way.

Although the examples are obtained by particular constructions, the principal ideas

of [13, 14] are of a more general nature and might be applicable in other situations.

The i-th cohomology of a compact Kähler manifold is naturally endowed with a

Hodge structure of weight i, which can be polarized (on the primitive part) if the

manifold is projective. The idea is to show that there exist compact Kähler manifolds

whose cohomology does not admit Hodge structures that are compatible with both,

the given cup-product and a polarization. Roughly, there are three steps A-C, the

first two of which are purely Hodge-theoretical and only the last one has a geometric

flavor.

(A) Certain algebraic structures on a rational vector space A are not compatible

with any polarizable Hodge structure (of weight k) on A.

Remark 0.2. — In the examples, the algebraic structure will be a specific endomor-

phism Φ : A → A, but others are in principle possible. That the algebraic structure

is not compatible with any polarizable Hodge structure means in the case of an en-

domorphism Φ that one cannot find a Hodge structure on A such that Φ becomes an

endomorphism of it and such that the Hodge structure can be polarized.

(B) Suppose
⊕
Hℓ is a graded Q-algebra whose direct summands Hℓ are Hodge

structures of weight ℓ and such that the multiplications Hℓ1 ⊗Hℓ2 → Hℓ1+ℓ2 are ho-

momorphisms of Hodge structures. Suppose furthermore that this Q-algebra structure

allows us to detect a subspace A ⊂ Hk such that: i) A ⊂ Hk is a Hodge substructure.

ii) An algebraic structure as in (A) is compatible with this Hodge structure.

Then Hk does not admit a polarization.

Remark 0.3. — Subspaces that are defined purely in terms of the Q-algebra structure

do define Hodge substructures. We shall also need a refined version of this, which is

due to Deligne.

The compatibility in ii) is more difficult to check, but relies on the same principle.

For an endomorphism Φ the idea goes as follows: Firstly, find two Hodge substructures

A,A′ ⊂ Hk and a Hodge substructure ∆ ⊂ A ⊕ A′ ⊂ Hk which is the graph of an

isomorphism A ∼= A′. Secondly, prove that under the induced isomorphism of Hodge

structures A⊕A ∼= A⊕A′ the graph of Φ is a Hodge substructure.
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(C) Construct compact Kähler manifolds such that the above principles apply

to its cohomology ring
⊕
Hℓ(X,Q). Then H∗(X,Q) should not be realizable by a

smooth projective variety.

Remark 0.4. — This works best for Hodge structures of weight one (k = 1). In this

case H1(X,Q) of a smooth projective variety X admits a polarized Hodge structure.

For the Hodge structure of weight two on H2(X,Q) one needs an extra argument, for

only the primitive part of it admits a polarization.

This report roughly follows these three steps. Some of the algebraic structures

in Section 2 might seem rather ad hoc, as their geometric origin is only explained

in Section 3. However, I found it helpful for my own understanding to completely

separate the arguments that explain why certain Q-algebras cannot be realized as the

cohomology of a projective manifold from the part that contains the construction of

compact Kähler manifolds that do realize these Q-algebras.
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1. HODGE STRUCTURES (OF WEIGHT ONE AND TWO)

1.1. Recollections

A Hodge structure of weight k on a Q-vector space A is given by a direct sum

decomposition

(1) AC := A⊗Q C =
⊕

p+q=k

Ap,q such that Ap,q = Aq,p.

A direct sum decomposition (1) can also be described in terms of a representation

ρ : C∗ → Gl(AR) such that the C-linear extension of ρ(z) satisfies ρ(z)|Ap,q = zpz̄q · id.

The Hodge classes of a Hodge structure of weight 2k on A are the elements in Ak,k∩A.

We shall be particularly interested in Hodge structures of weight one and two.

Remark 1.1. — Recall that Hodge structures of weight one with Ap,q = 0 for pq 6= 0

which are integral, i.e., A = ΓQ for some lattice Γ, are in bijection with complex tori.

Indeed, to a Hodge structure of weight one on ΓQ given by ΓC = A1,0 ⊕ A0,1 one

associates the complex torus A1,0/Γ, where Γ is identified with its image under the

projection AC → A1,0.
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A Q-linear map ϕ : A→ A′ is a morphism (of weight m) of Hodge structures

AC =
⊕

p+q=k

Ap,q and A′C =
⊕

r+s=ℓ

A′r,s

of weight k and ℓ = k + 2m, respectively, if ϕ(Ap,q) ⊂ A′p+m,q+m. If the two Hodge

structures correspond to ρ : C∗ → Gl(AR) and ρ′ : C∗ → Gl(A′R), respectively, then

this condition is equivalently expressed by ϕ(ρ(z)v) = |z|2mρ′(z)ϕ(v) for all v ∈ A

and z ∈ C∗.

A Hodge substructure of a Hodge structure of weight k on A is given by a subspace

A′ ⊂ A such that A′C =
⊕

(Ap,q ∩A′C) or, equivalently, such that A′C ⊂ AC is in-

variant under the representation ρ : C∗ → Gl(AR) that corresponds to the given

Hodge structure on A.

The tensor product A⊗QA
′ of two Q-vector spaces A and A′ endowed with Hodge

structures of weight k and ℓ, respectively, comes with a natural Hodge structure of

weight (k + ℓ):

(A⊗Q A
′)r,s :=

⊕

p+p′=r,q+q′=s

Ap,q ⊗C A
′p′,q′ .

In other words, the Hodge structure is given by ρ⊗ ρ′.

Note that A2 :=
∧2

A1 of a Hodge structure of weight one A1 is naturally a Hodge

structure of weight two with A2,0
2 :=

∧2
A1,0

1 , A1,1
2 := A1,0

1 ⊗A0,1
1 , and A0,2

2 :=
∧2

A0,1
1 .

A polarization of a Hodge structure of weight one AC = A1,0 ⊕ A0,1 is a skew-

symmetric form q ∈ ∧2 A∗ such that

(2) AC ×AC
// C, (v, w)

� // iq(v, w)

(where q is extended C-linearly) satisfies the Hodge–Riemann relations:

i) A1,0 and A0,1 are orthogonal with respect to (2).

ii) The restriction of (2) to A1,0 and to A0,1 is positive, respectively negative,

definite.

Remark 1.2. — With this definition a polarization is always rational. Furthermore,

the form q considered as an element of the induced weight-two Hodge structure on∧2
A∗ is of type (1, 1). Since it is rational, q is a Hodge class (of weight two). Note

that any Hodge substructure of a weight-one polarized Hodge structure is naturally

polarized.

Example 1.3. — Let X be a compact Kähler manifold of dimension n. The Hodge

decomposition

H1(X,C) = H1,0(X) ⊕H0,1(X)

defines a Hodge structure of weight one on H1(X,Q).

Suppose X is projective and ω ∈ H2(X,Z) is the class of a hyperplane section,

then q(α) =
∫
X
α2ωn−1 is a polarization of the natural Hodge structure of weight one

on H1(X,Q).
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