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THE STRONG abc CONJECTURE OVER FUNCTION FIELDS
[after McQuillan and Yamanoi]

by Carlo GASBARRI

1. INTRODUCTION

One of the deepest conjectures in arithmetics is the abc conjecture:

Conjecture 1.1. — Let ε > 0; then there exists a constant C(ε) for which the
following holds: Let a, b and c be three integral numbers such that (a, b) = 1 and
a+ b = c. Then

max{|a|, |b|, |c|} ≤ C(ε)
( ∏
p/abc

p
)1+ε

,

where the product is taken over all the prime numbers dividing abc.

Let us give a geometric interpretation of this conjecture:

Consider the arithmetic surface P1
Z → Spec(Z) equipped with the tautological line

bundle O(1) and the divisor D := [0 : 1] + [1 : 0] + [1 : −1]. Suppose we have a section
P : Spec(Z) → P1

Z, not contained in D; then P ∗(D) is an effective Weil divisor on
Spec(Z) which can be written as

∑
p vp(D)[p].

Define the radical of the divisor as N (1)
D (P ) :=

∑
p min(1, vp(D)) log(p).

The conjecture can be stated in this way: for every ε > 0, there is a constant C(ε)

such that, for every section P : Spec(Z)→ P1
Z, we have

h O(1)(P ) ≤ (1 + ε)N
(1)
D (P ) + C(ε),

where h O(1)(P ) is the height of P with respect to OP1(1). When we state the conjecture
in this way we see many possible generalizations. We also clearly see the geometric
analogue over function fields (cf. next sections for details). Let us formulate the con-
jecture in the most general version.

If K is a number field, we denote by OK the ring of integers of K and by ∆K its
discriminant. If X → K is an arithmetic surface, D an effective divisor over X and
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P : Spec( OK) → X a section not contained in D, we define the radical of D as the
real number

N
(1)
D (P ) :=

∑
p∈Spec max( OK)

min{1; vpP
∗(D)} log Card( OK/p).

The general strong abc conjecture is the following:

Conjecture 1.2. — Let ε > 0, and let K be a number field, π : X → Spec( OK) a
regular arithmetic surface and D ↪→ X an effective divisor on X. Denote by KX/ OK
the relative dualizing sheaf. Then there exists a constant C := C(X, ε,D) for which
the following holds: Let L be a finite extension of K and let P : Spec( OL) → X be a
section not contained in D; then

hKX/ OK
(D)(P ) ≤ (1 + ε)(N

(1)
D (P ) + log |∆L|) + C[L : K],

where hKX/ OK
(D)(P ) is the height of P with respect to KX/ OK (D).

We will not list here the endless number of consequences of this conjecture and
we refer to [3] or to the web page [19] for details. One may also see the report [21]
in this seminar. We only notice that, if such a conjecture was true, more or less all
the possible problems about the arithmetic of algebraic curves over number fields
would have an effective answer: for instance one easily sees that, if the constant C is
effective, it easily implies the famous Fermat Last Conjecture (now a theorem [28])
and it allows to solve effectively diophantine equations in two variables:

Theorem 1.3. — Suppose that Conjecture 1.2 is true. Let F (x; y) ∈ Z[x, y] be an ir-
reducible polynomial of degree at least three. Then there exists a constant C, depending
only on F , such that for every number field K and for every solution (x; y) ∈ OK× OK
of the diophantine equation F (x; y) = 0, we have

h O(1)([x : y : 1]) ≤ (1 + ε) log |∆K |+ Cε[K : Q].

In particular there are only finitely many solutions in OK × OK and their height can
be explicitly bounded.

Observe that, if the conjecture is true and the constant Cε is explicit, then we
can explicitly compute and find the set of solutions of the diophantine equation in
OK × OK .

Similarly we may obtain an effective version of Mordell’s conjecture (Faltings’
theorem) and of the classical Siegel theorem on integral points of hyperbolic curves.

At the moment we know that the set of integral points of a hyperbolic curve is
finite (projective by Faltings’ theorem [7] or affine by Siegel’s theorem, cf. [24]) but
we are not able to explicitly bound their height (up to some sporadic cases); thus, in
particular, it is not possible to find all the rational points of a hyperbolic curve.
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In this paper we will report about the solution of the analogue of the abc conjec-
ture over function fields (for the analogy between number fields and function fields
arithmetic cf. for instance [24]).

The analogue of Conjecture 1.1 for polynomials is quite easy and proved in [12]:
If f is a polynomial over C (to simplify), let N0 = (f) be the number of distinct roots
of f . Then the analogue of the abc conjecture for polynomials is

Theorem 1.4 (Mason). — Let f , g and h be three polynomials relatively coprime in
C[t] such that f + g = h; then

max{deg(f),deg(g),deg(h)} ≤ N0(fgh)− 1.

This theorem is the analogue of Conjecture 1.2 for function fields whenX = P1×P1,
π : X → P1 is the first projection, D = P1×[0 : 1]+P1×[1 : 0]+P1×[1 : −1] and P is a
section. One easily deduces it from Hurwitz’s formula (cf. next section). It can be seen
as the beginning of all the story, and it has some interesting consequences: for example
the analogue of Fermat’s last theorem for polynomials is an immediate consequence
of it. Usually statements in the function fields situation are much easier to prove than
their correspondent in the number fields situation. In this case one should notice an
amazing point: Suppose that, over number fields, we can prove Conjecture 1.2 when
X = P1

Z and D = [0 : 1] + [1 : 0] + [1 : −1]; then we can deduce the general case
from this! To prove it, one applies the proof of Theorem 7.1 to a suitable Belyi map
(for more details, see [6]). In the function fields case this is not the case! We cannot
deduce the general case from an isotrivial case. For this reason it is our opinion that
P1
Z with the divisor [0 : 1] + [1 : 0] + [1 : −1] (unit equations) is a highly non isotrivial

family over Spec(Z) (whatever an isotrivial family should be).

Exploiting the analogy between the arithmetic geometry over number fields and
the theory of analytic maps from a parabolic curve to a surface (cf. for instance [26]),
an analogue of the abc conjecture for these maps is also solved.

We will propose two proofs of the abc conjecture over function fields (and for
analytic maps). The first one is the proof by McQuillan [15] and the second one is by
Yamanoi [29]. The proof by McQuillan is synthetically explained in the original paper;
it makes a systematic use of the theory of integration on algebraic stacks; although this
is very natural in this context, it needs a very heavy background (which is used here
only in a quite easy situation). Thus we preferred to propose a self contained proof
which uses the (easier) theory of normal Q–factorial varieties; the proof follows the
main ideas of the original one. The proof by Yamanoi requires skillful combinatorial
computations, well explained in the original paper, thus we preferred to sketch his
proof in a special (but non trivial) case: the main ideas and tools are all used and
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we think that once one understands this case, it is easier to follow the proof in the
general situation.

As before, we find for instance, as a consequence, a strong effective version of
Mordell’s conjecture over function fields (in characteristic zero), for non isotrivial
families of hyperbolic curves.

In the next section, we will explain why the abc conjecture for isotrivial curves
corresponds respectively to the Hurwitz formula in the geometric case and to the
Nevanlinna Second Main theorem in the analytic case. Thus the abc conjecture may
be seen as a non isotrivial version of these theorems.

There are at least two strategies to attack the Second Main Theorem of Nevan-
linna’s theory. The first strategy uses tools from analytic and differential geometry,
it is strictly related to the algebraic geometry of the Hurwitz formula and to the
existence of particular singular metrics on suitable line bundles: it has been strongly
generalized to analytic maps between equidimensional varieties by Griffiths, King and
others in the 70’s (cf. [8]). The second strategy is via Ahlfors’ theory (cf. [1]); it is
much related to the algebraic and combinatorial topology of maps between surfaces;
the version of the SMT one obtains in this way is weaker than the original one but
also more subtle: one sees that one can perturb a little bit the divisor D without
perturbing the statement (cf. § 8). These two approaches correspond respectively to
the two proposed proofs. The proof by McQuillan is nearer to the first strategy while
the one by Yamanoi is more topological. One should notice that, while the first proof
is predominantly of a global nature and the second one is essentially local, both meet
the main difficulties in an argument which is localized around the singular points of
the morphism p : X → B. If the morphism p is relatively smooth, McQuillan’s proof is
much simpler. In a hypothetical relatively smooth case, Yamanoi’s approach reduces
to the Ahlfors theory: you will observe that, unless you are in the isotrivial case, in
Yamanoi’s approach there is always a bad reduction.

Both proofs hold for curves over function fields in one variable over C and both
heavily use analytic and topological methods, specific of the complex topology. We
should notice that the analogue of the abc conjecture, as stated before, over a function
field with positive characteristic is false (cf. [11])!

1.1. A short overview of the history of the abc conjecture

The abc conjecture has a weak and a strong version (in the arithmetic case they
are both unproven and very deep). Over function fields, the weak abc is easier to
prove and it is strictly related with the theory of elliptic curves (cf. [10] and [25]).
Here we deal with the strong version. The conjecture has been formulated in the
middle 80’s by Masser and Oesterlé exploiting the analogy between number fields and
function fields and the version for polynomials proved in [12]. The general version,
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