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DEVELOPMENTS IN FORMAL PROOFS

by Thomas C. HALES

Si la mathématique formalisée était aussi simple que le jeu
d’échecs, ... il n’y aurait plus qu’à rédiger nos démonstrations
dans ce langage, comme l’auteur d’un traité d’échecs écrit dans
sa notation ... Mais les choses sont loin d’être aussi faciles, et
point n’est besoin d’une longue pratique pour s’apercevoir qu’un
tel projet est absolument irréalisable. — Bourbaki, 1966 [16, p. 5]

A proof assistant is interactive computer software that humans use to prepare
scripts of mathematical proofs. These proof scripts can be parsed and verified directly
from the fundamental rules of logic and the foundational axioms of mathematics. The
technology underlying proof assistants and formal proofs has been under development
for decades and grew out of efforts in the early twentieth century to place mathe-
matics on solid foundations. Proof assistants have been built upon various mathe-
matical foundations, including Zermelo-Fraenkel set theory (Mizar), Higher Order
Logic (HOL), and dependent type theory (Coq) [50, 36, 14]. A formal proof is one
that has been verified from first principles (generally by computer).

This report will focus on three particular technological advances. The HOL Light
proof assistant will be used to illustrate the design of a highly reliable system. Today,
proof assistants can verify large bodies of advanced mathematics; and as an example,
we will turn to the formal proof in Coq of the Feit-Thompson Odd Order theorem in
group theory. Finally, we will discuss advances in the automation of formal proofs, as
implemented in proof assistants such as Mizar, Coq, Isabelle, and HOL Light.

1. BUILDING A TRUSTWORTHY SYSTEM WITH HOL LIGHT

HOL Light is a lightweight implementation of a foundational system based on
Higher Order Logic (HOL). Because it is such a lightweight system, it is a natural
system to use for explorations of the reliability of formal proof assistants.
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1.1. Naive type theory

HOL, the foundational system of mathematics that we describe in this section, is
based on a simply typed λ-calculus. This subsection describes a simple type theory
in naive terms.

A salient feature of set theory is that it is so amorphous; everything is a set: ordered
pairs are sets, elements of sets are sets, and functions between sets are sets. Thus, it
is meaningful in set theory to ask bizarre questions such as whether a Turing machine
is a minimal surface. In type theory, the very syntax of the language prohibits this
question. Computer systems benefit from the extra structure provided by types.

Naively, a simple type system is a countable collection of disjoint nonempty sets
called types. The collection of types satisfies a closure property: for every two types A
and B, there is a further type, denoted A→ B, that can be identified with the set of
functions from A to B.

In addition to types, there are terms, which are thought of as elements of types.
Each term t has a unique type A. This relationship between a term and its type is
denoted t ∶ A. In particular, f ∶ A→ B denotes a term f of type A→ B.

There are variables that range over types called type variables, and another collec-
tion of variables that run over terms.

1.2. Models of HOL

The naive interpretation of types as sets can be made precise. We build a model of
HOL in Zermelo-Fraenkel-Choice (ZFC) set theory to prove that HOL is consistent
assuming that ZFC is. In this section, we review this routine exercise in model theory.
At the same time, we will give some indications of the structure of HOL Light. See [35]
for a more comprehensive introduction to HOL Light.

The interpretation of variable-free types as sets is recursively defined. We use a su-
perscriptM to mark the interpretation of a type as a set. Specifically, the types in HOL
are generated by the boolean type bool (which we interpret as a set boolM = {⊤,⊥}
of cardinality two with labeled elements representing true and false) and the infinite
type I (which we interpret as a countably infinite set IM ). Recursively, for any two
variable-free types A and B, the type A → B is interpreted as the set (A → B)M of
all functions from AM to BM . We can arrange that the sets interpreting these types
are all disjoint.

In summary so far, we fix an interpretation M , determining a countable collection
T = {AM} of nonempty sets in ZFC. We now extend our interpretation M to a
valuation v = (M,v1, v2), where v1 is a function from the set of type variables in
HOL to T , and v2 is a function from the set of term variables in HOL to ⋃T . The
valuation v extends recursively to give a mapping that assigns a set Av ∈ T to every
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type A. We require v2 to be chosen so that whenever x is a variable of type A,
then xv2 ∈ Av. The valuation v extends recursively to give a mapping on all terms:

t↦ tv ∈ Av ∈ T , for all t ∶ A.

For example, for every type A, there is a HOL term (=) of type A → (A → bool)
representing equality for that type.(1) This term is interpreted as the function in (A→
(A → bool))v that maps a ∈ Av to the delta function δa supported at a (where the
support of the function means the preimage of ⊤).

A sequent is a pair (L, t), traditionally written L ⊢ t, where L is a finite set of
terms called the assumptions, and t is a term called the conclusion. The terms of L
and t must all have type bool. If L is empty, it is omitted from the notation.

If L is a finite set of Boolean terms, and if v is a valuation extending M , write Lv

for the corresponding set of elements of the set boolM . We say a sequent L ⊢ t is
logically valid if for every valuation v for which every element of Lv is ⊤∈ boolM , we
also have tv =⊤ in boolM .

A theorem in HOL is a sequent that is generated from the mathematical axioms
and rules of logic. There is a constant FALSE in HOL. The following amounts to saying
that HOL does not prove FALSE.

Theorem 1. — If ZFC is consistent, then HOL is consistent.

Proof sketch. — We give the proof in ZFC. Here, HOL is treated purely syntactically
as a set of strings in a formal language.

We run through the rules of logic of HOL one by one and check that each one
preserves validity.(2) For example, the reflexive law of equality in HOL states that
for any term t of any type A, we have a theorem ⊢ t = t. By the interpretation of
equality described above, under any valuation v, this equation is interpreted as the
value δtv(tv) ∈ boolM , which is ⊤. Hence the reflexive law preserves validity. The
other rules (transitivity of equality, and so forth) are checked similarly.

We may well-order each set in the collection T . HOL posits a choice operator of
type (A→ bool)→ A for every type A. The well-ordering allows us to interpret HOL’s
choice operator as an operator that maps a function f ∈ (A→ bool)v with nonempty
support to the minimal element of its support.

(1) The convention in HOL is to curry functions: using the bijection XY ×Z = (XZ)Y to write a
function whose domain is a product as a function of a single argument taking values in a function
space. In particular, equality is a curried function of type A → (A → bool) rather than a relation
on A ×A.
(2) There are ten such rules, giving the behavior of equality, λ-abstractions, β-reduction, and the
discharge of assumptions. For reference purposes, an appendix lists the inference rules of HOL. The
analysis in this section omits the rules for the creation of new term constants and types.
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