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MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport
& Tonghai Yang

Abstract. — We form generating series, valued in the Chow group and the arithmetic
Chow group, of special divisors on the compactified integral model of a Shimura vari-
ety associated to a unitary group of signature (n− 1, 1), and prove their modularity.
The main ingredient in the proof is the calculation of vertical components appearing
in the divisor of a Borcherds product on the integral model.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura unitaires)
Nous formons des séries génératrices, à valeurs dans le groupe de Chow et dans le

groupe de Chow arithmétique, formées des diviseurs spéciaux sur le modèle intégral
compact d’une variété de Shimura associée à un groupe unitaire de signature (n−1, 1),
et prouvons leur modularité. L’ingrédient principal de la preuve est le calcul des
composantes verticales apparaissantes dans le diviseur d’un produit de Borcherds sur
le modèle intégral.

1. Introduction

The goal of this paper is to prove the modularity of a generating series of special
divisors on the compactified integral model of a Shimura variety associated to a uni-
tary group of signature (n − 1, 1). The special divisors in question were first studied
on the open Shimura variety in [33, 34], and then on the toroidal compactification
in [24].

This generating series is an arithmetic analogue of the classical theta kernel used
to lift modular forms from U(2) and U(n). In a similar vein, our modular generating
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series can be used to define a lift from classical cuspidal modular forms of weight n
to the codimension one Chow group of the unitary Shimura variety.

1.1. Statement of the main result. — Fix a quadratic imaginary field k ⊂ C of odd
discriminant disc(k) = −D. We are concerned with the arithmetic of a certain unitary
Shimura variety, whose definition depends on the choices of k-hermitian spaces W0

andW of signature (1, 0) and (n−1, 1), respectively, where n ≥ 3. We assume thatW0

and W each admit an Ok-lattice that is self-dual with respect to the hermitian form.
Attached to this data is a reductive algebraic group

(1.1.1) G ⊂ GU(W0)×GU(W )

over Q, defined as the subgroup on which the unitary similitude characters are equal,
and a compact open subgroup K ⊂ G(Af ) depending on the above choice of self-dual
lattices. As explained in § 2, there is an associated hermitian symmetric domain D,
and a Deligne-Mumford stack Sh(G,D) over k whose complex points are identified
with the orbifold quotient

Sh(G,D)(C) = G(Q)\D ×G(Af )/K.

This is the unitary Shimura variety of the title.
The stack Sh(G,D) can be interpreted as a moduli space of pairs (A0, A) in which

A0 is an elliptic curve with complex multiplication by Ok, and A is a principally po-
larized abelian scheme of dimension n endowed with an Ok-action. The pair (A0, A) is
required to satisfy some additional conditions, which need not concern us in the in-
troduction.

Using the moduli interpretation, one can construct an integral model of Sh(G,D)

over Ok. In fact, following work of Pappas and Krämer, we explain in § 2.3 that there
are two natural integral models related by a morphism SKra → SPap. Each integral
model has a canonical toroidal compactification whose boundary is a disjoint union
of smooth Cartier divisors, and the above morphism extends uniquely to a morphism

(1.1.2) S∗Kra → S∗Pap

of compactifications.
Each compactified integral model has its own desirable and undesirable properties.

For example, S∗Kra is regular, while S∗Pap is not. On the other hand, every vertical (i.e.,
supported in nonzero characteristic) Weil divisor on S∗Pap has nonempty intersection
with the boundary, while S∗Kra has certain exceptional divisors in characteristics p | D
that do not meet the boundary. An essential part of our method is to pass back and
forth between these two models in order to exploit the best properties of each. For
simplicity, we will state our main results in terms of the regular model S∗Kra.

In § 2 we define a distinguished line bundle ω on SKra, called the line bundle of
weight one modular forms, and a family of Cartier divisors ZKra(m) indexed by inte-
gers m > 0. These special divisors were introduced in [33, 34], and studied further in
[11, 23, 24]. For the purposes of the introduction, we note only that one should regard
the divisors as arising from embeddings of smaller unitary groups into G.
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Denote by
Ch1

Q(S∗Kra) ∼= Pic(S∗Kra)⊗Z Q
the Chow group of rational equivalence classes of divisors with Q coefficients. Each
special divisor ZKra(m) can be extended to a divisor on the toroidal compactification
simply by taking its Zariski closure, denoted Z∗Kra(m). The total special divisor is
defined as

(1.1.3) Ztot
Kra(m) = Z∗Kra(m) + BKra(m) ∈ Ch1

Q(S∗Kra)

where the boundary contribution is defined, as in (5.3.3), by

BKra(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ).

The notation here is the following: The sum is over the equivalence classes of proper
cusp label representatives Φ as defined in § 3.1. These index the connected compo-
nents S∗Kra(Φ) ⊂ ∂S∗Kra of the boundary (1). Inside the sum, (L0, 〈., .〉) is a hermitian
Ok-module of signature (n− 2, 0), which depends on Φ.

The line bundle of modular forms ω admits a canonical extension to the toroidal
compactification, denoted the same way. For the sake of notational uniformity, we
extend (1.1.3) to m = 0 by setting

(1.1.4) Ztot
Kra(0) = ω

−1 + Exc ∈ Ch1
Q(S∗Kra).

Here Exc is the exceptional divisor of Theorem 2.3.4. It is a reduced effective divisor
supported in characteristics p | D, disjoint from the boundary of the compactification.
The following result appears in the text as Theorem 7.1.5.

Theorem A. — Let χk : (Z/DZ)× → {±1} be the Dirichlet character determined
by k/Q. The formal generating series∑

m≥0

Ztot
Kra(m) · qm ∈ Ch1

Q(S∗Kra)[[q]]

is modular of weight n, level Γ0(D), and character χnk in the following sense: for
every Q-linear functional α : Ch1

Q(S∗Kra)→ C, the series∑
m≥0

α(Ztot
Kra(m)) · qm ∈ C[[q]]

is the q-expansion of a classical modular form of the indicated weight, level, and char-
acter.

We can prove a stronger version of Theorem A. Denote by Ĉh
1

Q(S∗Kra) the Gillet-
Soulé [20] arithmetic Chow group of rational equivalence classes of pairs Ẑ = (Z,Gr),

where Z is a divisor on S∗Kra with rational coefficients, and Gr is a Green function

(1) After base change to C, each S∗Kra(Φ) decomposes into h connected components, where h is the
class number of k.
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for Z. We allow the Green function to have additional log-log singularities along the
boundary, as in the more general theory developed in [13]. See also [8, 24].

In § 7.3 we use the theory of regularized theta lifts to construct Green functions
for the special divisors Ztot

Kra(m), and hence obtain arithmetic divisors

Ẑtot
Kra(m) ∈ Ĉh

1

Q(S∗Kra)

for m > 0. We also endow the line bundle ω with a metric, and the resulting metrized
line bundle ω̂ defines a class

Ẑtot
Kra(0) = ω̂

−1 + (Exc,− log(D)) ∈ Ĉh
1

Q(S∗Kra),

where the vertical divisor Exc has been endowed with the constant Green function
− log(D). The following result is Theorem 7.3.1 in the text.

Theorem B. — The formal generating series

φ̂(τ) =
∑
m≥0

Ẑtot
Kra(m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]]

is modular of weight n, level Γ0(D), and character χnk, where modularity is understood
in the same sense as Theorem A.

Remark 1.1.1. — As this article was being revised for publication, Wei Zhang an-
nounced a proof of his arithmetic fundamental lemma, conjectured in [52]. Although
the statement is a purely local result concerning intersections of cycles on unitary
Rapoport-Zink spaces, Zhang’s proof uses global calculations on unitary Shimura va-
rieties, and makes essential use of the modularity result of Theorem B. See [53].

Remark 1.1.2. — Theorem B implies that the Q-span of the classes Ẑtot
Kra(m) is finite

dimensional. See Remark 7.1.2.

Remark 1.1.3. — There is a second method of constructing Green functions for the
special divisors, based on the methods of [36], which gives rise to a non-holomorphic
variant of φ̂(τ). It is a recent theorem of Ehlen-Sankaran [16] that Theorem B implies
the modularity of this non-holomorphic generating series. See § 7.4.

One motivation for the modularity result of Theorem B is that it allows one to
construct arithmetic theta lifts. If g(τ) ∈ Sn(Γ0(D), χnk) is a classical scalar valued
cusp form, we may form the Petersson inner product

θ̂(g)
def
= 〈φ̂, g〉Pet ∈ Ĉh

1

C(S∗Kra)

as in [38]. One expects, as in [loc. cit.], that the arithmetic intersection pairing of θ̂(g)

against other cycle classes should be related to derivatives of L-functions, providing
generalizations of the Gross-Zagier and Gross-Kohnen-Zagier theorems. Specific in-
stances in which this expectation is fulfilled can be deduced from [11, 23, 24]. This
will be explained in the companion paper [10].
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As this paper is rather long, we explain in the next two subsections the main ideas
that go into the proof of Theorem A. The proof of Theorem B is exactly the same,
but one must keep track of Green functions.

1.2. Sketch of the proof, part I: the generic fiber. — In this subsection we sketch the
proof of modularity only in the generic fiber. That is, the modularity of

(1.2.1)
∑
m≥0

Ztot
Kra(m)/k · qm ∈ Ch1

Q(S∗Kra/k)[[q]].

The key to the proof is the study of Borcherds products [4, 5].
A Borcherds product is a meromorphic modular form on an orthogonal Shimura

variety, whose construction depends on a choice of weakly holomorphic input form,
typically of negative weight. In our case the input form is any

(1.2.2) f(τ) =
∑

m�−∞
c(m)qm ∈M !,∞

2−n(D,χn−2
k ),

where the superscripts ! and ∞ indicate that the weakly holomorphic form f(τ) of
weight 2 − n and level Γ0(D) is allowed to have a pole at the cusp ∞, but must be
holomorphic at all other cusps. We assume also that all c(m) ∈ Z.

Our Shimura variety Sh(G,D) admits a natural map to an orthogonal Shimura
variety. Indeed, the k-vector space

V = Homk(W0,W )

admits a natural hermitian form 〈., .〉 of signature (n−1, 1), induced by the hermitian
forms on W0 and W . The natural action of G on V determines an exact sequence

(1.2.3) 1→ Resk/QGm → G→ U(V )→ 1

of reductive groups over Q.
We may also view V as a Q-vector space endowed with the quadratic form

Q(x) = 〈x, x〉 of signature (2n − 2, 2), and so obtain a homomorphism G → SO(V ).
This induces a map from Sh(G,D) to the Shimura variety associated with the
group SO(V ).

After possibly replacing f by a nonzero integer multiple, Borcherds constructs a
meromorphic modular form on the orthogonal Shimura variety, which can be pulled
back to a meromorphic modular form on Sh(G,D)(C). The result is a meromorphic
section ψ(f) of ω

k, where the weight

(1.2.4) k =
∑
r|D

γr · cr(0) ∈ Z

is the integer defined in § 5.3. The constant γr =
∏
p|r γp is a 4th root of unity (with

γ1 = 1) and cr(0) is the constant term of f at the cusp

∞r =
r

D
∈ Γ0(D)\P1(Q),

in the sense of Definition 4.1.1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020


