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p-ADIC FAMILIES OF MODULAR FORMS
[after Hida, Coleman, and Mazur]

by Matthew EMERTON

INTRODUCTION

The theory of p-adic families of modular forms grew out of two highly related
traditions in the arithmetic theory of modular forms: the theory of congruences of
modular forms (which dates back to work of Ramanujan) and the (more recent)
theory of Galois representations attached to modular forms. The first example of a
p-adic family of modular forms was the Eisenstein family, considered by Serre in [37].
This is a family of q-expansions, parametrized by the weight k, whose coefficients are
p-adically continuous functions of k. Serre’s immediate goal in studying this family
was to obtain an understanding of the possible congruences between the q-expansion
coefficients of modular forms in different weights, especially of the constant terms,
since such congruences lead to congruences between special values of ζ-functions.

The papers [23, 22] led to a decisive shift in the theory, placing it at the centre
of the arithmetic theory of modular forms. In these papers, Hida constructed p-adic
families of cuspforms, varying continuously with the weight k, which were also simul-
taneous eigenforms for the Hecke operators. Thus, in light of the known construction
of Galois representations attached to Hecke eigenforms, one found that associated to
these p-adic families of cuspidal eigenforms there were corresponding p-adic families of
p-adic Galois representations. The existence of such families led Mazur to develop his
general theory of deformations of Galois representations [31], which in turn inspired
further developments [45, 43].

Hida’s constructions had a certain limitation: if f is a Hecke eigenform of weight
k ≥ 1 and level N prime to p, then f appears in a Hida family if and only if (at least)
one of the roots of the pth Hecke polynomial of f is of slope zero (i.e. a p-adic unit).
This restriction was removed by the work of Coleman and Mazur [10], who constructed
p-adic analytic (more precisely, rigid analytic) curves of eigenforms containing any
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such form f , whether or not its pth Hecke polynomial admits a unit root; these are
the so-called eigencurves.

The eigencurves are fundamentally analytic objects. One can also ask whether
there is an algebraic family (or more precisely, a scheme) that parametrizes all the f
as above, regardless of the slopes of the roots of the pth Hecke polynomial. Indeed,
there is such an object; all the eigenforms f (of arbitrary weight but some fixed
level N) are parametrized by the Zp points of SpecT(N), where T(N) is the p-adic
Hecke algebra of level N . These points are no longer parametrized by weight; indeed,
SpecT(N) is (at least conjecturally) of relative dimension three over SpecZp. It is
conjectured that every continuous, two-dimensional, semi-simple odd p-adic Galois
representation of GQ that is unramified outside finitely many primes corresponds
to a point of SpecT(N) for some appropriate value of N . This is one of the main
motivations for the study of the families SpecT(N), and the related p-adic families
of eigenforms constructed by Hida and Coleman–Mazur.

In Section 1 of this exposé we recall the basic theory of modular forms, Hecke oper-
ators, and the Galois representations associated to Hecke eigenforms. In Section 2, we
outline the definitions and basic results and conjectures regarding the p-adic Hecke
algebras T(N), and the families of Hida and Coleman–Mazur. We focus more on
systems of Hecke eigenvalues attached to eigenforms, rather than on the eigenforms
themselves. This is in keeping with our focus on the relationship with Galois repre-
sentations (although it takes us somewhat far in spirit from the concrete viewpoint
of [37]).
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0.1. Notation

As usual Q, R, and C denote the fields of rational, real, and complex numbers, and
Z denotes the ring of integers. For any prime p, we let Zp denote the ring of p-adic
integers, and Qp denote the field of p-adic numbers.

We let Q denote the algebraic closure of Q in C, and let Z denote the integral
closure of Z in Q. For each prime p, we fix an algebraic closure Qp of Qp, and let Zp
denote the integral closure of Zp in Qp. We also fix an embedding ıp : Q ↪→ Qp. This
restricts to an embedding Z ↪→ Zp. We write Fp to denote the residue field of Zp. It is
an algebraic closure of the field Fp of p elements. We let ordp : Qp → Z∪{∞} denote
the p-adic valuation, normalized so that ordp(p) = 1. If x ∈ Qp, then ordp(x) is also
called the slope of x. (Thus x has finite slope if and only if x 6= 0, while x has slope
zero if and only if x ∈ Z×p .)

ASTÉRISQUE 339



(1013) p-ADIC FAMILIES OF MODULAR FORMS 33

1. MODULAR FORMS, HECKE ALGEBRAS, AND GALOIS
REPRESENTATIONS

1.1. Modular forms

Let
H =

{
τ ∈ C | =(τ) > 0

}
denote the complex upper half-plane. The group SL2(Z) acts on H in the usual way:(

a b

c d

)
τ =

aτ + b

cτ + d
.

Let O( H ) denote the space of holomorphic functions on H . If k is an integer, then
we define the weight k-action of SL2(Z) on O( H ) as follows:

(f |k γ)(τ) := (cτ + d)−kf(γτ),

for f ∈ O( H ) and γ =
(
a b
c d

)
∈ SL2(Z); as the notation indicates, this is a right action.

If N ≥ 1, define

Γ1(N) :=
{
γ ∈ SL2(Z) | γ ≡ ( 1 ∗

0 1 ) mod N
}
.

Definition 1.1. — A modular form (resp. cuspform) of weight k and level N is a
holomorphic function f ∈ O( H ) that is invariant under the weight k-action of Γ1(N),
and for which

(1) lim
y→∞

(f |k γ)(iy)

exists and is finite (resp. vanishes) for each γ ∈ SL2(Z). We let Mk(N) (resp. Sk(N))
denote the space of modular forms (resp. cuspforms)of weight k and level N .

Remark 1.2. — If f ∈ O(H) is invariant under the weight k-action of Γ1(N), then,
in order to check if f is a modular form or a cuspform, it suffices to study the
limit (1) for finitely many γ ∈ SL2(Z) (namely, for a set of coset representatives
for Γ1(N)\SL2(Z)).

Remark 1.3. — If f is a modular form of weight k and level N , then, applying the
invariance property of f to the matrix ( 1 1

0 1 ) ∈ Γ1(N), one finds that f(τ+1) = f(τ).
We may thus expand the function f(τ) as a Fourier series

f(τ) :=
∞∑

n=−∞
cn(f)qn,

where q := exp(2πiτ). Condition (1), with γ = 1, then shows that cn(f) = 0 for n < 0

(resp. for n ≤ 0 if f is a cuspform). We refer to this Fourier series as the q-expansion
of f .
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Clearly Mk(N) and Sk(N) are vector subspaces of O( H ). In fact they are also
finite dimensional. (See [39] for a discussion of this and other basic facts concerning
modular forms.)

Example 1.4. — If k < 0, then Mk(N) = 0. When k = 0, the space M0(N) consists
simply of the constant functions on H (and so S0(N) = 0). To avoid these trivial cases,
we will typically assume that k ≥ 1 in all that follows. As k increases, the dimensions
of both Mk(N) and Sk(N) grow essentially linearly in k (with the exception that
Mk(N) = 0 if N = 1 or 2 and k is odd).

Example 1.5. — The simplest examples of modular forms of positive weight are the
Eisenstein series Ek ∈ Mk(1). These are defined for even k ≥ 4. (It is easily shown
that Mk

(
1) vanishes if k is odd or 0 < k < 4.) The q-expansion of Ek is given by the

following formula:

Ek(τ) =
−Bk
2k

+
∞∑
n=1

Å∑
d|n

dk−1

ã
qn,

where Bk is the kth Bernoulli number.
There is a direct sum decomposition

Mk(1) = CEk ⊕ Sk(1).

More generally, for any N , we may decompose Mk(N) into the direct sum of a space
of Eisenstein series (typically of dimension greater than one when N > 1) and the
space of cuspforms. (See Example 1.18 below.)

1.2. Hecke operators

Fix integers k ≥ 1 and N ≥ 1. Write

Γ0(N) :=
{
γ ∈ SL2(Z) | γ ≡ ( ∗ ∗0 ∗ ) mod N

}
.

Note that Γ0(N) contains Γ1(N) as a normal subgroup, and that the map(
a b

c d

)
7→ d mod N

induces an isomorphism

(2) Γ0(N)/Γ1(N)
∼−→ (Z/NZ)×.

A simple computation, using the normality of Γ1(N) in Γ0(N), shows that the
weight k-action of Γ0(N) preserves Mk(N) and Sk(N). When restricted to these
spaces, this action obviously factors through the quotient Γ0(N)/Γ1(N), and hence,
via the isomorphism (2), we obtain an action of the group (Z/NZ)× on Mk(N) and
Sk(N). If d ∈ (Z/NZ)×, then we denote the corresponding automorphism of Mk(N)

by 〈d〉. (These operators are sometimes referred to as the diamond operators.)
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