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p-ADIC FAMILIES OF MODULAR FORMS
|[after Hida, Coleman, and Mazur]

by Matthew EMERTON

INTRODUCTION

The theory of p-adic families of modular forms grew out of two highly related
traditions in the arithmetic theory of modular forms: the theory of congruences of
modular forms (which dates back to work of Ramanujan) and the (more recent)
theory of Galois representations attached to modular forms. The first example of a
p-adic family of modular forms was the Eisenstein family, considered by Serre in [37].
This is a family of g-expansions, parametrized by the weight k, whose coefficients are
p-adically continuous functions of k. Serre’s immediate goal in studying this family
was to obtain an understanding of the possible congruences between the g-expansion
coefficients of modular forms in different weights, especially of the constant terms,
since such congruences lead to congruences between special values of {-functions.

The papers [23, 22] led to a decisive shift in the theory, placing it at the centre
of the arithmetic theory of modular forms. In these papers, Hida constructed p-adic
families of cuspforms, varying continuously with the weight k, which were also simul-
taneous eigenforms for the Hecke operators. Thus, in light of the known construction
of Galois representations attached to Hecke eigenforms, one found that associated to
these p-adic families of cuspidal eigenforms there were corresponding p-adic families of
p-adic Galois representations. The existence of such families led Mazur to develop his
general theory of deformations of Galois representations [31], which in turn inspired
further developments [45, 43].

Hida’s constructions had a certain limitation: if f is a Hecke eigenform of weight
k > 1 and level N prime to p, then f appears in a Hida family if and only if (at least)
one of the roots of the pth Hecke polynomial of f is of slope zero (i.e. a p-adic unit).
This restriction was removed by the work of Coleman and Mazur [10], who constructed
p-adic analytic (more precisely, rigid analytic) curves of eigenforms containing any
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such form f, whether or not its pth Hecke polynomial admits a unit root; these are
the so-called eigencurves.

The eigencurves are fundamentally analytic objects. One can also ask whether
there is an algebraic family (or more precisely, a scheme) that parametrizes all the f
as above, regardless of the slopes of the roots of the pth Hecke polynomial. Indeed,
there is such an object; all the eigenforms f (of arbitrary weight but some fixed
level N) are parametrized by the Z, points of Spec T(N), where T(N) is the p-adic
Hecke algebra of level V. These points are no longer parametrized by weight; indeed,
SpecT(N) is (at least conjecturally) of relative dimension three over SpecZ,. It is
conjectured that every continuous, two-dimensional, semi-simple odd p-adic Galois
representation of Gg that is unramified outside finitely many primes corresponds
to a point of Spec T(N) for some appropriate value of N. This is one of the main
motivations for the study of the families Spec T(N), and the related p-adic families
of eigenforms constructed by Hida and Coleman—Mazur.

In Section 1 of this exposé we recall the basic theory of modular forms, Hecke oper-
ators, and the Galois representations associated to Hecke eigenforms. In Section 2, we
outline the definitions and basic results and conjectures regarding the p-adic Hecke
algebras T(N), and the families of Hida and Coleman—-Mazur. We focus more on
systems of Hecke eigenvalues attached to eigenforms, rather than on the eigenforms
themselves. This is in keeping with our focus on the relationship with Galois repre-
sentations (although it takes us somewhat far in spirit from the concrete viewpoint
of [37]).
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0.1. Notation

As usual Q, R, and C denote the fields of rational, real, and complex numbers, and
7 denotes the ring of integers. For any prime p, we let Z, denote the ring of p-adic
integers, and @@, denote the field of p-adic numbers.

We let Q denote the algebraic closure of Q in C, and let Z denote the integral
closure of Z in Q. For each prime p, we fix an algebraic closure @p of Qp, and let Zp
denote the integral closure of Z, in @p. We also fix an embedding ¢, : Q— @p. This
restricts to an embedding Z < Z,. We write F,, to denote the residue field of Z,,. It is
an algebraic closure of the field I, of p elements. We let ord,, : @p — ZU{oo} denote
the p-adic valuation, normalized so that ord,(p) = 1. If z € Q,, then ord,(x) is also
called the slope of x. (Thus z has finite slope if and only if z # 0, while z has slope
zero if and only if x € Z; 2
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1. MODULAR FORMS, HECKE ALGEBRAS, AND GALOIS
REPRESENTATIONS

1.1. Modular forms

Let
ﬂ:{TEC|S‘s(T)>0}

denote the complex upper half-plane. The group SLo(Z) acts on J¢ in the usual way:

<a b) at +b
T= .
c d ct+d
Let ©(F) denote the space of holomorphic functions on 4. If k is an integer, then
we define the weight k-action of SLy(Z) on ©(H) as follows:

(f le M(7) = (em + d)~" f(y7),

for f € O(#) and v = (2 %) € SLy(Z); as the notation indicates, this is a right action.
If N > 1, define

I1(N):={y€SLa(Z)|y=({}) mod N}.

DEFINITION 1.1. — A modular form (resp. cuspform) of weight k and level N is a
holomorphic function f € O(#) that is invariant under the weight k-action of T'1(N),
and for which

(1) lim (f |1 v)(iy)

Yy—0o0

exists and is finite (resp. vanishes) for each vy € SLy(Z). We let My (N) (resp. J,(N))
denote the space of modular forms (resp. cuspforms)of weight k and level N.

Remark 1.2. — If f € O(H) is invariant under the weight k-action of I'; (N), then,
in order to check if f is a modular form or a cuspform, it suffices to study the
limit (1) for finitely many v € SL2(Z) (namely, for a set of coset representatives
for T'1 (N)\SL2(Z)).

Remark 1.8. — If f is a modular form of weight k£ and level N, then, applying the
invariance property of f to the matrix (§ 1) € I'1(V), one finds that f(7+1) = f(7).
We may thus expand the function f(7) as a Fourier series

oo

f0 =3 el

n=-—o0o
where g := exp(2mit). Condition (1), with v = 1, then shows that ¢, (f) =0forn <0
(resp. for n < 0 if f is a cuspform). We refer to this Fourier series as the g-expansion

of f.

SOCIETE MATHEMATIQUE DE FRANCE 2013



34 M. EMERTON

Clearly My (N) and J,(N) are vector subspaces of O(#). In fact they are also
finite dimensional. (See [39] for a discussion of this and other basic facts concerning

modular forms.)

Ezample 1.4. — If k < 0, then My, (N) = 0. When k = 0, the space Mo(N) consists
simply of the constant functions on # (and so J,(IN) = 0). To avoid these trivial cases,
we will typically assume that k& > 1 in all that follows. As k increases, the dimensions
of both My (N) and J,(N) grow essentially linearly in k (with the exception that
Mp(N)=01if N =1 or 2 and k is odd).

Ezxample 1.5. — The simplest examples of modular forms of positive weight are the
Eisenstein series E € My (1). These are defined for even k > 4. (It is easily shown
that My, (1) vanishes if k is odd or 0 < k < 4.) The g-expansion of E}, is given by the

following formula:

Bu(r) = g+ (S o

n=1 dn

where By, is the kth Bernoulli number.
There is a direct sum decomposition

Mp(1) = CE, @ gjk(l).
More generally, for any N, we may decompose My (N) into the direct sum of a space
of Eisenstein series (typically of dimension greater than one when N > 1) and the
space of cuspforms. (See Example 1.18 below.)
1.2. Hecke operators
Fix integers k > 1 and N > 1. Write
To(N) :={y €SLy(Z)|y=(§:) mod N}.

Note that I'g(IV) contains I'1(N) as a normal subgroup, and that the map

a b
— dmod N
c d
induces an isomorphism

(2) Lo(N)/T1(N) — (Z/NZ)*.

A simple computation, using the normality of I'1(N) in T'g(IV), shows that the
weight k-action of I'g(N) preserves My (N) and . (N). When restricted to these
spaces, this action obviously factors through the quotient I'y(N)/I'1(N), and hence,
via the isomorphism (2), we obtain an action of the group (Z/NZ)* on My(N) and
Jp(N). If d € (Z/NZ)*, then we denote the corresponding automorphism of My (N)
by (d). (These operators are sometimes referred to as the diamond operators.)
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