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ERGODICITY OF TWO DIMENSIONAL TURBULENCE
[after Hairer and Mattingly]

by Antti KUPIAINEN

INTRODUCTION

The problem of turbulence has been described as the last great unsolved problem of
classical physics. Understanding of the complicated motion of fluids in the presence of
obstacles or stirring has been a challenge to mathematicians, physicists and engineers
for quite a time now. The equations governing macroscopic fluid motion, the Navier
Stokes equations, have been known for close to two centuries. For an incompressible
fluid in units where the density equals one they read

∂tu+ u · ∇u = ν∆u−∇p+ f.(1)

u(t, x) ∈ Rd is the velocity field at time t at x ∈ Λ, a domain in Rd subject to the
incompressibility condition

∇ · u = 0(2)

and suitable boundary conditions on ∂Λ. ν is the viscosity coefficient of the fluid,
p(t, x) the pressure and f(t, x) the external force that sustains the flow. Given f and
u(0, ·) the task is to find u and p. It is fair to say that theoretical understanding of
the consequences of these equations is still in its infancy. On the mathematical side,
existence of smooth solutions for the three dimensional NS equations is wide open
and has been chosen by some as one of the major problems of mathematics (http:
//www.claymath.org/millennium/). On the physical side, experimental violations
of the Kolmogorov scaling theory of turbulence [12] are still waiting for theoretical
understanding.

In two dimensions, i.e., for flows on the plane, there has been some progress during
the last ten years. On the physical side, 2d turbulence has been the subject of accurate
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numerical and experimental studies [5], [25] and mathematically the ergodic theory
of the NS flow has been under intensive study.

It is important to realize that for the problem of turbulence one is interested in a
very particular kind of force in (1), namely one that has a fixed length scale L built
into it. Examples of this are flows past obstacles, with L the characteristic size of
the obstacle. In such a setup the flow exhibits universal statistical properties as the
viscosity parameter tends to zero (actually the control parameter is a dimensionless
quantity, the Reynolds number given by Lv

ν where v is a velocity scale related to the
forcing). E.g. time averages of measurements of suitable functions of u seem to show
statistical properties only depending on the Reynolds number. It is therefore of some
interest to inquire about the foundations for such statistical studies, i.e., about the
ergodic properties of the NS flow in the turbulent setup of a fixed scale high Reynolds
number forcing.

A convenient model for isotropic and homogeneous turbulence (i.e., in the limit of
large Reynolds number and away from the boundary ∂Λ) is to consider (1) Equation (1)
on the torus T2 = R2/(2πZ)2 and take f random, a Fourier series with a finite number
of terms and coefficients independent white noises (see below). Then the deterministic
dynamics of (1) is replaced by a Markov process and one may pose questions on its
ergodic properties: whether the process has a unique stationary state and whether
this is reached and with what rate from arbitrary initial conditions.

This Markov process is a diffusion process of a very degenerate type. While the
phase space is infinite dimensional the noise is finite dimensional. There are two gen-
eral mechanisms that can contribute to the ergodic and mixing properties of stochastic
flows. One is dissipation, coming in our case from the Laplacian in (1). Dissipation
contributes to ergodicity by exponential contraction of phase space under the flow. A
second mechanism comes from the spreading of the noise from its finite dimensional
subspace due to the nonlinear term in (1). In finite dimensional diffusion processes
this leads to hypoellipticity if the noise spreads to the full phase space: the transition
kernels are smooth (for equations with smooth coefficients). Combined with some
irreducibility of the process ergodicity follows.

In our infinite dimensional setup the dissipation due to the Laplacian leads to
strong damping of large enough (depending on the Reynolds number) Fourier modes.
If we keep noise on all the other, low, modes then one can reduce the problem to a
low mode dynamics, albeit with some (exponentially decaying) memory due to the
large modes. Proofs of ergodicity and mixing of the dynamics were given in this case
in the works [6], [10] and [18]. However, it seemed far from trivial to extend the
hypoellipticity ideas to the infinite dimensional setup to control also the case of very

(1) To get to the turbulent state one actually has to modify (1) a bit, see Section 8.
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degenerate forcing where the number of forced modes does not depend on the Reynolds
number. This was accomplished by Hairer and Mattingly [13], [15] who gave sharp
sufficient conditions for the noise to produce ergodic and mixing dynamics. In what
follows I will present the main points of their approach focusing on the difference
to finite dimensional hypoelliptic diffusions. The papers [13], [15] are very clearly
written and they contain plenty of background material, especially [15] which builds
a more general formalism applicable also to some reaction-diffusion equations. [15]
also corrects a mistake in [13] so it should be consulted for a thorough study. In the
final section I discuss more informally what we have learned about 2d turbulence and
what issues might be accessible to a rigorous mathematical analysis.

I would like to thank J. Bricmont, M. Hairer and J. Mattingly for comments on this
exposition and the European Research Council and Academy of Finland for financial
support.

1. 2D NS EQUATIONS

The fundamental fact that is behind both the mathematical and physical under-
standing of 3d NS equations is energy conservation: in the absence of forces smooth
inviscid flow preserves the L2 norm of u(t, ·). In two dimensions there is a second
conserved quantity, the enstrophy, which is related to the H1 norm and which leads
to quite different physics and to much better regularity.

Let us first define the vorticity

ω = ∇× u,

which in d = 2 is a (pseudo)scalar: ω = ∂1u2 − ∂2u1. The NS equation becomes in
terms of ω a transport equation:

ω̇ = ν∆ω − u · ∇ω + g,(3)

where g = ∂1f2 − ∂2f1. We will assume the average force vanishes, i.e.,
∫
f(t, x)dx = 0.

Then (1) preserves the condition
∫
u(t, x)dx = 0 which we will assume. The incom-

pressibility condition (2) allows to write u = A ω where the linear operator A is
given in terms of the Fourier transform by

Â ω(k) = i(k2,−k1)k−2ω̂(k)(4)

for k ∈ Z2 \ 0.
The enstrophy E is defined to be (half of) the L2-norm of ω:

E =
1

2

∫
ω(t, x)2dx :=

1

2
‖ω(t)‖2.
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For a smooth u the condition ∇ · u = 0 leads to the absence of contribution from the
nonlinear term to the evolution of the enstrophy:

d E
dt

= −ν
∫

(∇ω)2dx+

∫
ωgdx,(5)

where the first term on the RHS can be interpreted as an enstrophy dissipation
rate and the second one as an enstrophy injection rate. Using Poincaré inequality
‖∇ω‖ ≥ ‖ω‖ and simple estimates one deduces

‖ω(t)‖2 ≤ e−νt‖ω(0)‖2 + ν−2 sup
t
‖g(t)‖2.(6)

This a priori estimate for the H1 norm of u is the main ingredient in the proof of
global regularity of the 2d NS flow.

We wish now to discuss a version of (3) where the force g is random. We work in the
subspace of real valued L2(T2) functions with ω̂(0) = 0. It will be convenient to use
the following basis for this space. Let Z+ be the “upper half plane” in Z2 consisting
of k = (k1, k2) with k2 > 0 or k2 = 0 and k1 > 0. Hence Z2 \ 0 = Z+ ∪ (−Z+).
Let ek = sin kx for k ∈ Z+ and ek = cos kx for −k ∈ Z+. For each k ∈ Z2 pick
independent Brownian motions βk(t) with unit speed, denoted collectively by β(t)

and numbers γk ∈ R. Let

Qβ(t) =
∑
k∈Z2

γkβk(t)ek.(7)

The stochastic version of Equation (3) reads

dω = (ν∆ω − u · ∇ω)dt+Qdβ.(8)

Regularity of the stochastic flow proceeds in parallel with the deterministic case as
long as γk have enough decay at infinity. The analog of the enstrophy conservation
Equation (5) is obtained by an application of the Ito formula

d E =
1

2
d‖ω‖2 = −ν‖∇ω‖2dt+ (ω,Qdβ) + εdt(9)

where ε = 2π2∑
k γ

2
k can be interpreted as the enstrophy injection rate. Taking aver-

ages we get a probabilistic analog of (5) and (6):

d

dt
E E = −νE‖∇ω‖2 + ε(10)

and

E‖ω(t)‖2 ≤ e−2νt‖ω(0)‖2 + ν−1ε.(11)

Actually (9) can be used to control exponential moments of the enstrophy [6], [13]
Lemma A.1:

E exp(η‖ω(t)‖2) ≤ 2 exp(ηe−νt‖ω(0)‖2)(12)
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