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INTRODUCTION

The aim of this note is to report on some recent progress in the problem of
characterizing fundamental groups of compact Kähler manifolds, henceforth called
Kähler groups. More precisely we will illustrate, by means of a specific result, the
program outlined by Delzant and Gromov in [16]: “Identify the constraints imposed
by the Kähler nature of the space on the asymptotic invariants of its fundamental
group and then express these invariants in terms of algebraic properties”.

The result we have in mind is the theorem of T. Delzant [15] which says that a
solvable Kähler group contains a nilpotent subgroup of finite index. This is based on
the explicit description of the Bieri–Neumann–Strebel invariant of a Kähler group
π1(M) in terms of factorizations of M over hyperbolic Riemann surfaces.

Before we come to this main topic we will recall what a Kähler manifold is, then
list in telegraphic style results giving restrictions on Kähler groups and give a series
of examples. For a more complete account of the theory of Kähler groups up to 1995,
see [1].

Let M be a complex manifold with a Hermitian metric h, that is a collection of
Hermitian metrics hx on each tangent space TxM , varying smoothly with x. Then the
real part g := <h gives a Riemannian metric on the underlying real manifold and the
imaginary part ω := =h gives a real two-form. Together with the complex structure J
we have

(1) ω(X,Y ) = g(X,JY ) .

The Hermitian manifold (M,h) is Kähler if dω = 0. An elementary consequence of
this relation is that at each point of M there exist holomorphic coordinates such that
the Hermitian metric equals the flat metric on Cn up to and including terms of first
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order, [43, 3.14]. This readily implies the Kähler identities ([43, 6.1]) which are at the
basis of the Hodge decomposition of the cohomology of compact Kähler manifolds.
The compatibility condition (1) implies that ωn = n!d volg, in particular ω is non-
degenerate at each point, i. e. it is a symplectic form and, whenM is compact, defines
therefore a non-zero class in H2(M,R).

The following two observations lead to an important class of Kähler manifolds:

– the induced Hermitian structure on a complex submanifold N ⊂M of a Kähler
manifold is Kähler;

– up to a positive multiple, there is a unique SU(n+1)-invariant Hermitian metric
on CPn; since its imaginary part ω is an invariant two-form, it is closed. Nor-
malizing the metric so that

∫
CP1 ω = 1, one obtains the Fubini–Study metric.

Thus every smooth projective manifold is a Kähler manifold. In our context this leads
to the question whether every Kähler group is also the fundamental group of a smooth
projective variety, to which we do not know the answer. Remarkably, concerning
homotopy type, we have, thanks to Voisin [44], examples of compact Kähler manifolds
which do not have the homotopy type of a smooth projective variety. Finally, it is a
natural question whether the existence of a complex structure and/or a symplectic
structure on a compact manifold imposes additional restrictions on its fundamental
group, beyond being finitely presentable. In fact, every finitely presentable group is
the fundamental group of a complex threefold which is also symplectic ([18], see also
[30, 7.2]); it is thus the compatibility between these two structures, that is the defining
property of a Kähler structure, which will give restrictions on its fundamental group.

1. RESTRICTIONS

In this section Γ = π1(M) is the fundamental group of a compact Kähler mani-
fold M with Kähler form ω.

1.1. The first Betti number b1(Γ) is even

The vector space Hom(Γ,R) = H1(Γ,R) is isomorphic to the space H 1(M) of real
harmonic 1-forms on M ; precomposition of 1-forms with J gives a complex structure
on H 1(M) and hence its dimension b1(Γ) is even.

1.2. There is a non-degenerate skew-structure on H1(Γ,R)

On H1(Γ,R) the form (α, β) 7→
∫
M
α ∧ β ∧ ωn−1 is skew-symmetric and non-

degenerate (Hard Lefschetz Theorem). Noting that the classifying map M → BΓ

induces in cohomology an isomorphism in degree 1 and an injection in de-
gree 2 shows that this skew-symmetric form factors through the cup product
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Λ2H1(Γ,R)→ H2(Γ,R), which is therefore not zero if b1(Γ) > 0, [24]. In this context
there is a conjecture of Carlson and Toledo, namely that if Γ is infinite, there is
Γ′ < Γ of finite index with b2(Γ′) > 0. For more on this, see [29, 18.16], [26], [27],
[28].

1.3. The Malcev Lie algebra LΓ of Γ is quadratically presented

Associated to Γ there is a tower of nilpotent Lie algebras

· · · // LnΓ // Ln−1Γ // · · · ,

say over R, where LnΓ is the Lie algebra of the R-unipotent algebraic group deter-
mined by the quotient Γ/ CnΓ, where CnΓ is the n-term of the descending central
series. “Quadratic presentation” then means loosely that this tower of Lie algebras is
determined by the map H2(Γ)→ Λ2H1(Γ) (see [1, Chap. 3] and references therein).

1.4. A Kähler group has zero or one end(1)

The ideas and methods introduced by Gromov [21] leading to this result have
been very influential in this field in the last twenty years. Here are some high-
lights. Recall that for the number e(Γ) of ends of a finitely generated group we have
e(Γ) ∈ {0, 1, 2,∞}, with e(Γ) = 0 precisely when Γ is finite and e(Γ) = 2 precisely
when Γ is virtually Z; then Stallings’ theorem says that e(Γ) = ∞ precisely when Γ

is a nontrivial amalgam or an HNN-extension, both over a finite group. This theorem
will however not be used in the proofs. The first step, which has nothing to do with
Kähler manifolds, is the following

Proposition 1.1. — If Γ = π1(M), where M is a compact Riemannian manifold
and e(Γ) = +∞, then the space H 1

(2)(M̃) of square integrable harmonic 1-forms on
M̃ is non-trivial, and in fact infinite dimensional. In particular, the reduced L2-co-
homology group H

1(
Γ, `2(Γ)

)
does not vanish, as it is isomorphic to H 1

(2)(M̃) by a
variant of Dodziuk’s de Rham theorem.

The central result is then the following factorization theorem:

Theorem 1.2 ([3]). — Let X be a complete Kähler manifold with bounded geometry
and H1(X,R) = 0. Assume that H 1

(2)(X) 6= 0. Then there exists a proper holomorphic
map with connected fibers h : X → D to the Poincaré disk; moreover the fibers of h
are permuted by Aut(X).

We obtain then the following purely group theoretical consequence:

(1) A general reference for this section is [1, Ch. 4].
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Corollary 1.3 ([3], [21]). — Let Γ be a Kähler group with H
1(

Γ, `2(Γ)
)
6= 0. Then

Γ is commensurable to the fundamental group Γg of a compact orientable surface of
genus g ≥ 2.

More precisely there are a subgroup Γ′ < Γ of finite index and an exact sequence

1 //F //Γ′ //Γg //1

with F finite. In particular e(Γ) = e(Γ′) = e(Γg) = 1 and thus a Kähler group has
zero or one end.

The factorization Theorem 1.2 follows from a general stability theorem for compact
leaves in singular holomorphic foliations, which also plays a central role in the work
of Delzant and Gromov on “Cuts in Kähler groups”, [16] (see also § 1.5). Recall that
the singular holomorphic foliation F η associated to a closed holomorphic 1-form η on
a complex manifold X is generated by the relations x ∼U y, where U is an open set
on which η = df with f holomorphic and x, y are in U and are in the same connected
component of a fiber of f .

Theorem 1.4 ([16, 4.1]). — Let X be a complete Kähler manifold of bounded
geometry, η a closed holomorphic 1-form on X and F η the associated singular
holomorphic foliation. If F η has one compact leaf, all leaves are compact.

One important principle here, which is an immediate consequence of the volume
monotonicity property of analytic subsets of Cn leading to the definition of Lelong
numbers [13, 15.1, Prop. 1], is the following uniform boundedness property of sub-
manifolds of finite volume.

Proposition 1.5. — If X is Kähler, complete and of bounded geometry, then for
every T > 0 and ε > 0 there is N(T, ε) ∈ N such that every closed (as a subset
of Y ) complex submanifold Y ⊂ X with vol(Y ) ≤ T can be covered by N(T, ε) balls
of radius ε. In particular Y is compact.

The proof of Theorem 1.2 then proceeds as follows: let α ∈ H 1
(2)(X) and ηα be

the L2-holomorphic 1-form with α = <ηα. Let f : X → C be holomorphic with
df = ηα; the co-area formula together with the L2-condition implies that f has a fiber
of finite volume. This implies by the above fact that F ηα has a compact leaf and by
Theorem 1.4 that all leaves are compact, so that one can apply Stein factorization. The
final point consists in showing that F ηα does not depend on the particular choice of α;
this follows from a tricky argument in L2-Hodge theory, using the boundedness of ηα
([22] or [1, lemma 4.16]) which gives that ηα ∧ ηβ = 0 for any choice α, β ∈ H 1

(2)(X),
and hence F ηα = F ηβ .
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