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1. INTRODUCTION

The notion of amenability was introduced in 1929 by J. von Neumann [48] in order
to explain the Banach-Tarski paradox. A countable discrete group Γ is amenable if
there exists a left-invariant mean ϕ : `∞(Γ) → C. The class of amenable groups
is stable under subgroups, direct limits, quotients and the free group F2 on two
generators is not amenable. Knowing whether or not the class of amenable groups
coincides with the class of groups without a nonabelian free subgroup became known
as von Neumann’s problem. It was solved in the negative by Ol’shanskii [50]. Adyan [1]
proved that the free Burnside groups B(m,n) with m generators, of exponent n (n ≥
665 and odd) are nonamenable. Ol’shanskii and Sapir [51] also constructed examples
of finitely presented nonamenable groups without a nonabelian free subgroup.

Two free ergodic probability measure-preserving (pmp) actions Γ y (X,µ) and
Λ y (Y, ν) of countable discrete groups on nonatomic standard probability spaces are
orbit equivalent (OE) if they induce the same orbit equivalence relation, that is, if
there exists a pmp Borel isomorphism ∆ : (X,µ)→ (Y, ν) such that ∆(Γx) = Λ∆(x),
for µ-almost every x ∈ X. Despite the fact that the group Z admits uncountably many
non-conjugate free ergodic pmp actions, Dye [13, 14] proved the surprising result that
any two free ergodic pmp actions of Z are orbit equivalent. Moreover, Ornstein and
Weiss [52] (see also [11]) proved that any free ergodic pmp action Γ y (X,µ) of any
infinite amenable group is always orbit equivalent to a free ergodic pmp Z-action on
(X,µ). On the other hand, results of [62, 12, 26] imply that any nonamenable group
has at least two non-OE free ergodic pmp actions. These results lead to a satisfying
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characterization of amenability: an infinite countable discrete group Γ is amenable if
and only if Γ admits exactly one free ergodic pmp action up to OE.

Measurable-group-theoretic solution to von Neumann’s problem

The first result we discuss in this paper is a positive answer to von Neumann’s
problem in the framework of measured group theory, due to Gaboriau and Lyons
[22]. Measured group theory is the study of countable discrete groups Γ through their
pmp actions Γ y (X,µ). We refer to [21] for a recent survey on this topic.

To any free pmp action Γ y (X,µ), one can associate the orbit equivalence relation
R(Γ y X) ⊂ X ×X defined by

(x, y) ∈ R(Γ y X)⇐⇒ ∃g ∈ Γ, y = gx.

For countable discrete groups Γ and Λ, we say that Λ is ameasurable subgroup of Γ and
set Λ <ME Γ if there exist two free ergodic pmp actions Γ y (X,µ) and Λ y (X,µ)

such that R(Λ y X) ⊂ R(Γ y X). Denote by Leb the Lebesgue measure on the
interval [0, 1] and let Γ y ([0, 1],Leb)Γ be the Bernoulli shift. Gaboriau and Lyons
[22] obtained the following remarkable result.

Theorem. — Let Γ be any nonamenable countable discrete group. Then there exists
a free ergodic pmp action F2 y ([0, 1],Leb)Γ such that

R(F2 y [0, 1]Γ) ⊂ R(Γ y [0, 1]Γ).

In particular, we get that F2 <ME Γ. This theorem has important consequences in
the theory of group von Neumann algebras.

Corollary. — Let Γ, H be countable discrete groups such that Γ is nonamenable
and H is infinite. Then the von Neumann algebra L(H o Γ) of the wreath product
group H oΓ := (

⊕
ΓH)oΓ contains a copy of the von Neumann algebra L(F2) of the

free group.

The proof of Gaboriau and Lyons’ result goes in two steps that we explain below.
We refer to Section 2 for background material on pmp equivalence relations.

The first step consists in finding a subequivalence relation R ⊂ R(Γ y [0, 1]Γ)

such that R is ergodic treeable and non-hyperfinite. This is a difficult problem in
general. By Zimmer’s result [68, Proposition 9.3.2], it is known that R(Γ y [0, 1]Γ)

contains an ergodic hyperfinite subequivalence relation. When Γ is finitely generated,
another way to obtain subequivalence relations of R(Γ y [0, 1]Γ) is by considering
invariant percolation processes on the Cayley graphs of Γ (see Section 3). This beau-
tiful idea is due to Gaboriau [20]. Gaboriau and Lyons exploit this idea and give two
different proofs of the first step, one using random forests, the other using Bernoulli
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percolation. They also suggest at the end of their article that the free minimal span-
ning forest [41] could serve as the desired treeable non-hyperfinite subequivalence
relation R. It is this approach that we will present in this paper. Sections 2 through
7 are entirely devoted to giving a self-contained proof of this first step. The proof is a
combination of ideas and techniques involving probability, ergodic theory, geometric
group theory and von Neumann algebras theory.

In the second step, one uses Gaboriau’s theory of cost [18] (see also [35]). An
ergodic treeable non-hyperfinite equivalence relation has cost greater than 1 by [18,
Théorème IV.1]. From the first step, one can then construct an ergodic treeable sube-
quivalence relation R ⊂ R(Γ y [0, 1]Γ) with cost ≥ 2. Finally, one applies Hjorth’s
result [27] in order to get a subequivalence relation of R(Γ y [0, 1]Γ) induced by a
free ergodic pmp action of F2.

Orbit equivalence theory of nonamenable groups

As mentioned before, any nonamenable group admits at least two non-OE free er-
godic pmp actions [12, 26, 62]. Over the last few years, the following classes of non-
amenable groups have been shown to admit uncountably many non-OE free ergodic
pmp actions: property (T) groups (Hjorth [26]); nonabelian free groups (Gaboriau
and Popa [23]); weakly rigid groups(1) (Popa [56]); nonamenable products of infinite
groups (Popa [60], see also [45, 28]); mapping class groups (Kida [37]). We refer to
[5, 24, 68] for earlier results on this topic.

In his breakthrough paper [30], Ioana proved that every nonamenable group Γ

that contains F2 as a subgroup admits uncountably many non-OE free ergodic pmp
actions. As we will see in Section 9, Ioana’s proof goes in two steps that we outline.
Regard F2 < SL2(Z) as a finite index subgroup and let F2 act on Z2 by matrix
multiplication. By results of Kazhdan-Margulis [33, 43], the pair (Z2 o F2,Z

2) has
the relative property (T). Write α : F2 y (T2, λ2) for the corresponding pmp action.
The first step (see Theorem 9.1) shows that in every uncountable set of mutually OE
actions of Γ whose restrictions to F2 admit α as a quotient, we can find two actions
whose restrictions to F2 are conjugate. The proof is based on a separability argument
which uses in a crucial way the fact that the action α : F2 y T2 is rigid in the sense
of Popa [55]. Note that the action α was already successfully used by Gaboriau and
Popa [23] in order to show that the free groups Fn have a continuum of non-OE
actions. The second step consists in using the co-induction technique (see Section 8)
in order to construct uncountably many actions of Γ whose restrictions to F2 are
non-conjugate. Altogether, one obtains uncountably many non-OE actions of Γ.

(1) A countable Γ is weakly rigid in the sense of Popa if it admits an infinite normal subgroup Λ < Γ

such that the pair (Γ, Λ) has the relative property (T).
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Gaboriau and Lyons’ result opened up the possibility that the condition “Γ contains
F2” in Ioana’s theorem could be replaced by the natural condition “Γ is nonamenable”.
In order to do so, one had to generalize the second step of Ioana’s proof, that is, one
needed a more general co-induction technology for group/measurable subgroup rather
than group/subgroup. Epstein [15] obtained such a construction (see Section 8). Since
the first step of Ioana’s proof remains unchanged for Γ containing F2 as a measurable
subgroup, Epstein [15] obtained the following result.

Theorem. — Every nonamenable group Γ admits uncountably many non-OE free
ergodic pmp actions.

Since then, this result has been generalized in two ways. First, recall that any free
ergodic pmp action Γ y (X,µ) gives rise to a finite von Neumann algebra L∞(X)oΓ

via the group measure space construction of Murray and von Neumann (see Section 6).
Two free ergodic pmp actions Γ y (X,µ) and Λ y (Y, ν) are W∗-equivalent if the
von Neumann algebras L∞(X)oΓ and L∞(Y )oΛ are ∗-isomorphic. Since the group
measure space construction only depends on the orbit structure of the action [63]
(see also [17]), it follows that orbit equivalence implies W∗-equivalence. Using Popa’s
concept of rigid inclusion of von Neumann algebras [55], Ioana [30] strengthened
the previous result by showing that any nonamenable group Γ admits a continuum
of W∗-inequivalent free ergodic pmp actions. Next, given any nonamenable group Γ,
denote by A0(Γ, X, µ) the standard Borel space of all free mixing pmp actions of Γ

on (X,µ) (see [34]). On the space A0(Γ, X, µ), consider the Borel equivalence relation
OE defined by (a, b) ∈ OE if and only if the actions a and b are orbit equivalent.
Epstein, Ioana, Kechris and Tsankov [31] proved that OE on the space A0(Γ, X, µ)

cannot be classified by countable structures.
We point out that both Ioana’s theorem and Epstein’s theorem rely on a separa-

bility argument and therefore only provide the existence of a continuum of non-OE
actions for Γ. What about concrete examples of a continuum of non-OE actions for
a given nonamenable group Γ? Important progress has been made over the recent
years. The classes of nonamenable groups for which a concrete uncountable family
of non-OE actions is known are the following: non-abelian free groups (Ioana [29]);
weakly rigid groups (Popa [56]); nonamenable products of infinite groups (Popa [60]);
mapping class groups (Kida [37]). We also refer to Popa and Vaes [61] for further
results regarding this question.
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