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THE RIBE PROGRAMME

by Keith BALL

INTRODUCTION

In 1976 Ribe [23] proved that uniformly homeomorphic Banach spaces have uni-
formly linearly isomorphic finite-dimensional subspaces: that if there is a uniformly
continuous homeomorphism between two Banach spaces, with uniformly continuous
inverse, then every finite-dimensional subspace of one space is linearly isomorphic to
a subspace of the other, with an implied constant of isomorphism independent of the
dimension. This remarkable rigidity theorem guarantees that finite-dimensional prop-
erties are determined up to isomorphism by the metric structure of the space. Thus
in principle, any property of a space that depends upon finite collections of points
has an equivalent formulation which makes no reference to the linear structure of the
space and involves only the distances between points.

In view of this, Bourgain [6] proposed an ambitious programme which came to
be known as “The Ribe Programme”: to find explicit metric descriptions of the most
important invariants of normed linear spaces. He himself kick-started the programme
by characterising superreflexivity. A Banach space X is called superreflexive if every
space whose finite-dimensional spaces embed uniformly well into X, must automati-
cally be reflexive. Bourgain showed this holds precisely if the space does not contain
copies of arbitrarily large binary trees. Needless to say the general aim of the Ribe
programme is not merely to find metric equivalents of linear properties but to transfer
the subtle and well-developed theory of normed spaces to the non-linear setting, and
in this broader sense the programme had been anticipated in a prescient paper of
Johnson and Lindenstrauss, [13].

Within a decade or two the Ribe programme acquired an importance that would
have been hard to predict at the outset, as the insights provided by the programme
became powerful tools in the theory of algorithms and more recently in geometric
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group theory. Data sets often come equipped with a metric structure but rarely a
linear one. For a number of central algorithmic problems the most effective procedure
is to embed the data-set into a familiar linear geometry, without distorting it too much,
and then use the linear structure to analyse the embedded copy of the data. Plainly,
data that fail to possess a metric property that holds in the linear geometry cannot be
embedded: so it is essential to understand what these properties are and where they
appear. The study of groups as metric spaces and in particular their embeddability
into simpler geometric structures has become a subject of intense interest in the last
5-10 years because of its connection with several famous problems such as the Novikov
conjecture.

In this article I will describe what is currently by far the most successful family
of achievements within the Ribe programme: the development of metric equivalents
of type and cotype. In order to make the article reasonably self-contained I shall
discuss the linear invariants as well as the non-linear ones and describe three classical
principles (due in various combinations to Kwapień, Maurey and Pisier) that provided
the inspiration for the non-linear development and serve as test cases to check that the
non-linear invariants are useful. The non-linear theory proceeded in two (or even three)
distinct phases that were quite widely separated in time. In the first phase Bourgain
and others introduced metric type and initiated the theory of non-linear embedding.
Formally the theory of embedding does not form part of the Ribe programme but it
goes hand in hand with it. It is hard to imagine that the recent subtle development
of the non-linear Dvoretzky Theorem by Mendel and Naor [19] would have emerged
without something like the Ribe programme. Indeed, it still seems extraordinary that
there is a subtle structure theory for objects as diverse as general metric spaces,
mirroring the structure theory for normed spaces. In the second phase, or second
half of the first phase, the present author introduced the Markov type and cotype
properties for the specific purpose of studying Lipschitz extensions. The article had
an effect opposite to the one that mathematicians always hope for: it seemed to
halt the programme instead of encouraging further development. This was probably
because we were unable to prove that the Markov type property held in any space
other than Hilbert space. Ten years later this embarrassing open problem was adopted
by Naor who solved it in collaboration with Peres, Schramm and Sheffield and who
then produced a series of deep articles with Mendel that form the current phase of the
development. They introduced a metric form of cotype, showed that for linear spaces
it agreed with linear cotype and proved a non-linear analogue of the Maurey-Pisier
Theorem. This is the most technically difficult part of the Ribe programme to date.

The story begins with the linear invariants.
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1. LINEAR (OR RADEMACHER) TYPE AND COTYPE

The type and cotype invariants were introduced simultaneously by Maurey in the
study of factorisation of linear maps and by Hoffmann-Jørgensen for the study of
vector-valued central limit theorems. A detailed history of how these ideas grew out
of earlier work of James and others can be found in the article of Maurey, [16]. A
normed space X has type p if there is a constant T so that for every sequence of
vectors x1, . . . , xn in X

Ave‖ ± x1 ± x2 ± · · · ± xn‖p ≤ T p
n∑
1

‖xi‖p

where the average is taken over all choices of sign in the vector sum. It has cotype q
with constant C if

n∑
1

‖xi‖q ≤ CqAve‖ ± x1 ± x2 ± · · · ± xn‖q

for every such sequence. In Hilbert space, both statements hold with equality if p = 2

or q = 2 and with constants T = 1 or C = 1. (The identity that results is the paral-
lelogram identity.) Consideration merely of the real line shows that if the respective
properties are to hold in any space then necessarily p ≤ 2 and q ≥ 2. Using the Khint-
chine inequality for the Lp norms of sign averages it is straightforward to show that
if 1 ≤ p ≤ 2 the space Lp has type p and cotype 2, while if 2 ≤ q <∞, Lq has type 2
and cotype q. Every space has type 1 and (with the obvious convention) cotype ∞.
Thus there are spaces other than Hilbert space that possess either the optimal type
(type 2) or optimal cotype (cotype 2). For this reason these properties have a special
place in the theory. However, a gorgeous result of Kwapień [14] from the early days
of the theory shows that only Hilbert space can possess both type 2 and cotype 2.

2. METRIC TYPE AND A NON-LINEAR `1 THEOREM

The first metric analogue of type appeared in the work of Enflo [10] (actually before
the linear version was introduced). He (in effect) asked: for which spaces X is it true
that there is a constant T so that for every n and every embedding of the corners
of the cube {−1, 1}n into X, the average squared length of the cube’s 2n diagonals
is at most nT 2 times the average squared length of the cube’s n2n−1 edges? Such
a space clearly has type 2 (with the same constant) since Enflo’s definition allows
folded (non-linear) embeddings of the cube, but asks for the same inequality. Enflo
observed that Hilbert space does have this property: that folding the cube shortens
the diagonals (on average) more than the edges. But the question already illustrates
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some of the difficulties that one encounters in the Ribe programme. It is still unknown
whether Enflo’s property holds for linear spaces with type 2 and it is clear that we
cannot hope to find a metric version of cotype just by allowing folded cubes, since we
can fold the diagonals to nothing while keeping the edges of fixed length.

Following Bourgain’s enunciation of the Ribe programme, Bourgain, Milman and
Wolfson [8] wrote an article in which they chose a modification of Enflo’s property as
their definition of metric type (for 1 < p ≤ 2) and showed that a space with linear
type p has metric type r for all r < p. They also proved a metric analogue of Pisier’s
`1 theorem (see [21]) which states that the finite-dimensional L1-spaces are the only
possible obstruction to type:

Theorem 2.1 (Pisier). — If a normed space X fails to have type p for every p > 1

(the space has no non-trivial type) then there is a constant C so that for every n, X
has a subspace Y which is C-isomorphic to the n-dimensional L1-space, `n1 : in other
words there is a linear isomorphism T : Y → `n1 with ‖T‖ ‖T−1‖ ≤ C.

The theorem of [8] guarantees that a metric space which has no non-trivial met-
ric type contains uniformly Lipschitz-equivalent copies of the discrete cube {−1, 1}n

equipped with the metric it inherits from `n1 ; the Hamming cube as it is usually known.

Theorem 2.2 (Bourgain, Milman, Wolfson). — If a metric space X fails to have
type p for every p > 1 (the space has no non-trivial metric type) then there is a
constant C so that for every n, X has a subset which is C-lipschitz equivalent to the
metric space {−1, 1}n with the Hamming metric it inherits from `n1 .

As in Pisier’s paper, the crucial point is a submultiplicativity property for type
constants in terms of the number of vectors. This means that if the space contains a
cube of large dimension which looks a bit like a Hamming cube it must contain cubes
of smaller dimension which look very like Hamming cubes.

At about the same time, Bourgain [5] proved that every n-point metric space can
be embedded into Hilbert space with the distances between points of the space being
distorted by at most a constant multiple of log n. It had been known since the work
of Fritz John [12] that two n-dimensional normed spaces are linearly isomorphic with
an isomorphism constant at most

√
n. Bourgain’s Theorem was clearly inspired by

this fact about linear spaces together with a view which emerged at the time that the
number of points of a metric space would play a role something like the exponential
of the dimension of a normed space. This view was prompted by a fact related to
sphere-packing that had by then become a standard tool in the linear theory: the unit
ball of an n-dimensional normed space contains an ε-net with no more than (5/ε)n

elements.
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