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THE PROOF OF ORE’S CONJECTURE

[after Ellers-Gordeev and Liebeck-O’Brien-Shalev-Tiep]

by Gunter MALLE

INTRODUCTION

The commutator [g, h] := g−1h−1gh of two elements g, h of a group G is introduced

in every first course in group theory, as well as the commutator subgroup

[G,G] := 〈[g, h] | g, h ∈ G〉,

generated by all commutators in G, and usually it is stated that not all elements of

[G,G] need to be commutators. The first such example of finite order may have been

given by Fite [Fi02]. The smallest example of a finite groupG for which [G,G] contains

non-commutators has order 96; in fact there are two non-isomorphic groups of that

order in which the set of commutators does not equal the commutator subgroup, see

Guralnick [Gu80].

In a 1951 paper, Oystein Ore [Ore] shows that every even element in a symmetric

group of degree at least 3 is a commutator and claims that the proof can be extended

to show that every element in a simple alternating group An is a commutator. He

concludes by saying that “It is possible that a similar theorem holds for any simple

group of finite order, but it seems that at present we do not have the necessary methods

to investigate the question.” This has become known as Ore’s conjecture, the recent

solution of which [LOST] is the topic of this lecture:

Theorem 0.1 (Liebeck-O’Brien-Shalev-Tiep). — LetG be a finite non-abelian simple

group. Then every element of G is a commutator.

In fact, at almost the same time as Ore, Noboru Ito [Ito51] showed the same

statement for the alternating groups An, but without speculating about other finite

simple groups.

The proof of Ore’s conjecture relies on the classification of the finite simple groups

and, through Lusztig’s parametrization of irreducible characters of finite reductive
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groups, on the Weil conjectures; the final step also required a considerable amount of

computer calculation.

Note that obvious generalizations of Theorem 0.1 fail to hold. For example Gural-

nick [Gu10] gives a quite general construction of groups, including non-solvable ones,

with the property that [G,G] does not consist of commutators only: let G = U ≀ H

be the regular wreath product of two finite groups U,H with U abelian. If |U | > 2

or |[H,H ]| > 2 then some element of [H,G] is not a commutator in G (see also Isaacs

[Is77] for a weaker result). Thus, for U of order at least 3 and any non-abelian sim-

ple group H this gives a non-solvable example G with factor group H , and in fact

one may also obtain a perfect one (that is, a group G with G = [G,G]). Computer

calculations show that the smallest example of a perfect group not all of whose el-

ements are commutators is an extension of an elementary abelian group of order 24

with the alternating group A5. Even closer to the case of simple groups, H. I. Blau

[Bl94] proved that there exist (finitely many) quasisimple groups that contain non-

commutator central elements (see Theorem 6.1 below). Recall that a group G is

called quasisimple if it is perfect and the quotient G/Z(G) by its center Z(G) is (non-

abelian) simple. The smallest such example is the exceptional 6-fold covering group

of the alternating group A6 (that is, a non-split central extension of the cyclic group

of order 6 by A6), for which the central elements of order 6 can be seen not to be

commutators. So the property required by Ore’s conjecture seems to be closely tied

to simple groups.

We want to mention another open problem closely related to Ore’s conjecture,

which is concerned with the square C2 := {xy | x, y ∈ C} of a conjugacy class C, and

which in the introduction to the book [AH85] is attributed to J. G. Thompson:

Conjecture 0.2 (J. G. Thompson). — Let G be a finite non-abelian simple group.

Then there exists a conjugacy class C ⊆ G such that C2 = G.

Clearly, if C2 = G then every element in the product C2 is a commutator, so

the Thompson conjecture implies the (now proven) Ore conjecture. Many papers

on the Ore conjecture actually show that the stronger Thompson conjecture holds

for particular families of groups, so in this survey we will consider both conjectures

simultaneously.

In a broader context, the Ore conjecture can be thought of as a particular instance

of the surjectivity of word maps. For any word w in a free group Fr on r generators,

and any group G, one can ask whether the corresponding word map is surjective,

the Ore conjecture being the special case of the commutator word. This gives (non-

commutative) analogues of diophantine equations on groups. For example, the repre-

sentability of a group element by a product of kth powers, or by the kth power of a

given word, can be considered to be analogues of Waring’s problem in number theory.

This point of view has been propagated by Shalev (see e.g., [Sh09, LS09, LST11]).
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One attractive feature of these questions, which we will insist on throughout this

survey, is the fact that they also make sense for simple algebraic groups, where more

powerful methods are available and much more can be shown to hold.

Let us end this introduction with a short historical overview on the proof of Ore’s

conjecture. After Ore and Ito proved the conjecture for the simple alternating groups,

R.C. Thompson [Th61, Th62, Th62a] established it for the finite projective special

linear groups PSLn(q) = SLn(q)/Z(SLn(q)). The symplectic groups Sp2n(q) with q ≡

1 (mod 4) were handled by Gow [Gow88], and Bonten [Bo93] dealt with exceptional

groups of Lie type of low rank. The case of sporadic groups was settled by Neubüser,

Pahlings and Cleuvers [NPC84].

In 1998, E.W. Ellers and N.L. Gordeev [EG98] verified Ore’s conjecture (and in fact

Thompson’s conjecture) for all finite simple groups of Lie type over a finite field Fq,

whenever q > 9. This will be explained in Section 1. Building on this result, Shalev

[Sh09] then used asymptotic methods to show that for finite simple groups G, the

proportion of commutators tends to 1 as |G| tends to infinity. In that same paper he

also showed that for any word w 6= 1, there exists N = N(w) such that for every finite

simple group G of order |G| > N(w) we have w(G)3 = G. The exponent 3 was later

improved to 2 by Larsen, Shalev and Tiep [LST11]. We will discuss these methods

and results in Sections 4 and 5. The remaining (infinitely many) simple groups of Lie

type over small fields were then treated in the paper of Liebeck, O’Brien, Shalev and

Tiep [LOST]. We sketch their approach in Section 2.

1. THE APPROACH BY ELLERS AND GORDEEV

Ellers and Gordeev [EG98] succeeded in proving Ore’s conjecture for the finite sim-

ple groups of Lie type defined over fields of order at least 9. Since there are infinitely

many distinct classical groups over any given finite field, this still leaves infinitely

many open cases. The approach of Ellers-Gordeev is by direct computation. To get

some idea on the method, one should consider the following model case for algebraic

groups. This was proved by Pasiencier-Wang [PW62] over the complex numbers (with

a precursor result by Goto [Go49] for compact semisimple Lie groups), and then Ree

[Ree64] noticed that their argument can be extended to arbitrary algebraically closed

fields:

Theorem 1.1 (Pasiencier-Wang, Ree). — Let G be a semisimple linear algebraic

group over an algebraically closed field. Then each element of G is a commutator.

Proof (Sketch). — We want to show that g ∈ G is a commutator. First note that

a conjugate of a commutator is again a commutator, so we may replace g by any of

its conjugates. By a result of Borel, any element of G lies in some Borel subgroup

B of G, so we may assume that g ∈ B. Let U = Ru(B) be the unipotent radical of
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B, and T 6 B a maximal torus. One now needs the following auxiliary claim, whose

proof relies on a result of Kostant on the action of the Weyl group on the character

group of T , see [Ree64, (3.1)]:

(∗) For any s ∈ T there exists a regular element t ∈ T (that is, with CG(t) = T )

and x ∈ NG(T ) such that x−1tx = ts.

Now let g = su be the Jordan decomposition of g, where we may assume that s ∈ T ,

since all maximal tori of B are conjugate. By (∗) there exists a regular element t ∈ T

and x ∈ NG(T ) with x−1tx = ts. By Lemma 1.2 below applied to the regular element

ts ∈ T there is b ∈ B with b−1tsb = tsu, so that finally

g = su = t−1b−1tsb = t−1b−1x−1txb = [t, xb]

is a commutator.

Lemma 1.2. — Let B = U · T be a semidirect product of a nilpotent normal sub-

group U with an abelian group T . Then for t ∈ T with CB(t) = T the coset tU is a

single B-conjugacy class.

Proof. — By induction over a central series of U one easily shows that the map

U → U , u 7→ [t, u], is bijective, so any tv ∈ tU has the form tu for some u ∈ U .

An attempt to adapt this approach to finite groups of Lie type faces several

problems. First, it is no longer true that all elements lie in a Borel subgroup. So

one has to consider a larger collection of subgroups. Secondly, regular semisimple

elements exist in the Borel subgroup only if the underlying field is sufficiently large

compared to the rank. This is the principal reason why the Ellers-Gordeev method

cannot handle all simple groups of Lie type.

In a series of three papers Ellers-Gordeev show a particular form of Gauss decom-

position for elements of finite reductive groups. Recall that any finite simple group

of Lie type G can be obtained by the following construction. (This does not apply to

the Tits simple group 2F4(2)
′, which for most purposes should rather be considered

as a 27th sporadic simple group.) There exist a simple linear algebraic group H of

simply connected type over the algebraic closure of a finite field, and a Steinberg

endomorphism F : H → H, that is, a bijective morphism with finite fixed point set

H := HF , such that G = H/Z(H). Elements of G will be called regular if their

preimages in the algebraic group H are. If T 6 B 6 H is an F -stable maximal torus

inside an F -stable Borel subgroup of H, then the image in G of TF , respectively of

BF , is called a maximally split torus, respectively a Borel subgroup of G. The group

of F -fixed points of the unipotent radical Ru(B) is then called the unipotent radical

of BF . Ellers-Gordeev [EG94, EG95, EG96] obtain the following statement on Gauss

decompositions of elements.

ASTÉRISQUE 360



(1069) THE PROOF OF ORE’S CONJECTURE 323

Theorem 1.3 (Ellers-Gordeev). — Let G be a finite simple group of Lie type,

T 6 B 6 G a maximally split torus inside a Borel subgroup of G, U the unipotent

radical of B and U− the unipotent radical of the opposite Borel subgroup. Fix t ∈ T .

Then for any 1 6= g ∈ G there exists x ∈ G such that

xgx−1 = u1tu2 for suitable u1 ∈ U−, u2 ∈ U.

For the special linear groups this was first shown by Sourour [So86]. In fact, Ellers-

Gordeev prove the statement for Chevalley groups over any field K. Their proof takes

roughly 50 pages of explicit calculation in the various families of groups of Lie type.

Corollary 1.4. — In the situation of Theorem 1.3, suppose that t1, t2 ∈ T are

regular elements, and write C1, C2 for their conjugacy classes. Then C1C2∪{1} = G.

Proof. — Let 1 6= g ∈ G, then by Theorem 1.3 some conjugate xgx−1 of g has the

form u1t1t2u2 with u1 ∈ U−, u2 ∈ U . Now by Lemma 1.2 applied to the semidirect

products B = UT and U−T we can write u1t1 = v1t1v
−1
1 , and t2u2 = v2t2v

−1
2 for

suitable v1 ∈ U−, v2 ∈ U , whence

xgx−1 = u1t1t2u2 = v1t1v
−1
1 v2t2v

−1
2 ∈ C1C2,

as claimed.

Corollary 1.5. — In the situation of Theorem 1.3, assume that T contains a reg-

ular element. Then the Ore conjecture holds for G.

Proof. — Let t ∈ T be regular and let C1, C2 in the previous corollary be the class

of t, t−1 respectively. Then any element of G \ {1} is a commutator, and 1 ∈ G

trivially is.

Now note that, given H, F : H → H, and a maximally split maximal torus T 6 H

as above, any regular semisimple element s ∈ T is Fm-stable for m sufficiently large.

Thus there exist regular semisimple elements in T over fields of sufficiently large order.

But this field size might vary with the characteristic and with the type of G. So more

elaborate arguments are needed to establish a uniform, explicit bound:

Theorem 1.6 (Ellers-Gordeev [EG98]). — Let G be a finite simple group of Lie type

over a field of order at least 9. Then Thompson’s and Ore’s conjectures hold for G.

In fact, for most families of groups they obtain an even smaller bound on the field

size; for example, they show that Ore’s conjecture holds for symplectic groups over

fields of order at least 4. Note that this still leaves infinitely many open cases, namely

the classical groups of unbounded rank.

In their proof, Ellers-Gordeev use the following factorization result by Lev [Lev94],

which is shown by direct computation (a similar, but weaker decomposition statement

had been shown by Sourour [So86] in his proof of Thompson’s conjecture for SLn(K)).
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