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THE ROLE OF RUDIMENTARY RELATIONS IN COMPLEXITY THEORY

Volger , Hugo

Resume:

On etudie dans cet article les classes R et XR des relations rudimentaires et
faiblement rudumentaires qui se reposent sur la relation de la concatenation bomee .
On obtient RUD et XRUD , les classes correspondantes des langages , ocnire I1 union d'une
hierarchic lineaire resp. polynomiale . Ces hierarchies utilisent des quanteurs alter-
nants aux longueurs bomesou egalement des machines altemantes de Turing avec alter-
nanoe oonstante . Nous allons introduire une autre description utilisant des quanteurs
altemants pour des oracles . En plus on obtiendra une chalne nouvelle des hierarchies
pour tous les niveaux exponentiels , dont 1'union sera ERUD , 1'analogue exponentiel
de la classe RUD . Et on va montrer que ERUD est la classe E^ des langages elemen-
taires .
Abstract:

We shall study the classes R resp. XR of rudimentary resp. extended rudimen-
tary relations which are based on the relation of bounded concatenation . The associ-
ated classes RUD resp. XRUD of languages are the union of a linear - resp. polynom-
ial time hierarchy . It can be described either by means of alternating length bounded
quantifiers or by means of Turing machines with constant alternation . We shall intro-
duce another description based on alternating quantifiers for oracle sets . Extending
these results we obtain a chain of hierarchies for the iterated exponential time
levels , whose union is the class ERUD , the exponential analogue of RUD . Moreover , it
will be shcwi that ERUD coincides with the class of elementary recursive languages .
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1.Introduction:

This paper is a survey on the classes R , XR , ER of rudimentary resp. extended
rudimentary resp. esponential rudimentary relations and the corresponding classes
RUD , XRUD , ERUD of languages . R and XR were introduced by Smullyan in 1961 resp.
Bennett in 1962 (cf. [ 1 9 ] , [ 1 ] ) , whereas ER is a new class . As we shall see later , a
relation is rudimentary if it is definable from the concatenation relation by means
of a first order formula where all quantifiers have linear length bounds . XR resp.
ER will be the polyncmially resp. exponentially bounded analogue of R .

The associated classes RUD , XRUD , ERUD may be obtained as the union of pertain
hierarchies . In her thesis in 1975 Wrathall [27] has shown that there are length
bounded quantification hierarchies which yield m=RUD resp. PH=XRUD and have as
first step NLTIME resp. NPTIME . As length bounded quantification is closely related
to time bounded alternation , these hierarchies can also be described as constant
alternation hierarchies for m and PH (cf.Chandra.Stockmsyer [4],Kozen [ 1 0 ] ) .

Recently Orponen [ 1 6 ] has introduced a class EH as the union of an exponential
time hierarchy involving oracle set quantification and having NEXPTIME as a first
step . Extending his approach we are able to describe the hierarchies for m and PH
as oracle set quantification hierarchies . Moreover , we shall introduce classes EH^
as the union of an analogous hierarchy involving the i-th iterate e. of the exponen-
tial function , and we shall show that each of the three descriptions may be used .
As a consequence we obtain that ERUD is the union of the classes EH ) and coincides
with the class of elementary recursive languages . In addition , the alternating log-
space hierarchy of Chandra,Kozen and Stodkmeyer [ 5 ] may be viewed as step -1 of this
chain of hierarchies .

The class EH 1 which consists of languages requiring a constant number of
alternations is contained in the class LA. the corresponding class with a linear
amount of alternation . Recently we have shown that the decision problem of the theory
e.-bounded concatenation is complete in the class LA. w.r.t. polynomial time reduc-
— ( • } }lions for i^1 . In a certain sense these results for EH ' and LA. measure the power
of ê -bounded concatenation ( cf.also Wilkie [ 2 4 , 2 5 , 2 6 ] ) . However , the question- /j\whether the inclusion EH' cLA. is proper for some ±>_0 remains open . A positive
answer would imply that the inclusions PHcAPTIME and UicALTIME are proper , thus
solving important open problems in complexity theory .

2. Concatenation as a base of conputability theory:
In 1946 Quine [ 1 7 ] suggested to use the concatenation relation rather than

addition and multiplication as a base of oomputability theory . Thus in 1961 Smullyan
[ 1 9 ] introduced the class R resp. Rg of rudimentary resp. strictly rudimentary rela-
tions on { 1 , 2 } * . They consist of those relations which are definable from the con-
catenation relation by a first order formula where all quantifiers have a linear
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Rudimentary Relations
bound resp. are subword quantifiers . Smullyan has shown that R is all we need to
describe computations . Each language L c { l , 2 } * which is recursively enumerable i.e.
accepted by some Turing machine M can be obtained from a relation Q in R as follows:s
x€ L iff 3y: (x,y) C Q , where (x,y) € Q expresses the fact that y is an accepting com-
putation sequence with input x . This shows that R is large enough to enable us tos
describe Turing machine computations by means of words consisting of sequences of
configuration words . On the other hand Rg is quite small since the associated class
RUD of languages is contained in LOGSPACE and does not contain {l^^nEN} (cf.
Nepomjascii [15],Msloul [ 1 1 ] ) . In addition, the NPTmE-complete problem SAT(x) is
of the form 3y: | y | < |xl A Q(x,y) with Q in R as Msloul [ 1 1 ] has shown . This may ex-s
plain why the class R and the related classes R and XR play an important role in
complexity theory .

3. The rudimentary relations:
The class R resp. R of rudimentary resp. strictly rudimentary relations on

{ 1 , 2 } * , introduced by Smullyan [ 1 9 ] , is defined as the least class of relations which
contains the concatenation relation Con and which is closed under the boolean opera-
tions , explicit transformations and 3̂ inearty_bounded resp. sufĉ rd quantification .
The class R^ of positive rudimentary relations on { 1 , 2 } * , introduced by Bennett [ 1 ] ,
is defined as the least class of relations which contains the relation Con and which
is closed under finite unions and intersections , explicit transformations , subword
quantification and linearly .bounded existential quantification .

3y: y c x A ... , Vy: y c x -»... subword quantification
3y: lyl j^klxl A ... , Vy: | y | ̂ klxl ->. . . linearly bounded quantification
Using the k-adic encoding words over { 1 , . . . , k } may be identified with natural

numbers . Bennett [ 1 ] has shown that modulo the dyadic encoding R coincides with the
class CA of constructive arithmetic relations on N , which is the analogue of R on N
using + and x rather than Con . In addition , CA coincides with the class of bounded
arithmetic relations of Harrow [ 6 ] . Moreover , the analogues of R resp. R resp. R

+on { 1 , . . . , k } * coincide with R resp. R resp. R on { 1 , 2 } * modulo the k-adic encoding
and the dyadic decoding . Using the sequential encoding 6 <Q) of a relation Q one ob-
tains the corresponding classes of languages on { 1 , 2 , § } : RUD , RUD , RUD . It can be
shown that these classes may be identified with the unary relations in R , R , R .

Replacing linearly bounded quantification by golynomially _bounded quantification
(i.e. 3y: lyl ̂  IX^A ... and . yy: lyl 5 Ixl^ . . . ) one obtains the classes of extended
rudimentary resp. extended positive rudimentary relations , which were introduced by
Bennett [ 1 ] .

Going a step further we introduce the classes ER resp. ER of exponential rudi-
mentary resp. exponential positive rudimentary relations . They are obtained from
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R resp. R by replacing linearly bounded quantification by ê cnenUall̂  bounded

quantification (i.e. 3y: lyl ̂  ( 1 x 1 ^ A ... and vy: |y| _<e. (Ix^)-»... with e. (n) = 2" ).
Clearly , iterated exponential functions can be used as length bounds as well. - The
corresponding classes of languages are denoted by XRUD , XRUD"1' resp. ERUD , ERUD^ .
These classes are related as follows : RUD c RUD4'c: RUD , XRUD4'c XRUD , ERUD4'c ERUD and
RUD4'c XRUD4'c ERUD4", RUDcXRUDcERUD .

It should be mentioned that Jones [8] has introduced sublinear analogues of the
class R resp. RUD . In particular , he considered a subclass RUD, of LOGSPACE . It is
not clear how this class fits into the above set up .

4. Turing machines with constant resp. linear alternation:
Chandra and Stockmeyer [4] and Kozen [10] have extended the concept of nondeter-

ministic Turing machines (MM's) to alternating Turing machines (AIM'S) . There is a
close connection between alternation and quantification . In particular , hierarchies
defined by bounded quantification are closely related to hierarchies defined by
constant alternation using the same time bound .

An ATM M is a NTM which has 2 disjoint sets of states , the existential and uni-
versal states , and a distinguished accepting resp. rejecting state . Configurations
and their successor relation are defined as for NTM's . An input w is accepted by M
(i.e. w€L(M)) , if there exists a finite accepting subtree B of the computation tree
of M for w . B is accepting , if (1 ) the root of B is labeled with the input configu-
ration for w, (2) all leaves of B are labeled with accepting configurations , (3) if
a node b of B is labeled with an existential (resp. universal) configuration C then
at least one (resp. all) successor configurations C' of C must appear as labels of
successors b* of b (cf. Berman [2]) .

A language L belongs to the alternation class STA(s,t,a) , if L is accepted by
an ATM M such that each w in L posesses an accepting subtree B of depth <_ t (n) and
alternation depth ^a(n) and each configuration in B uses space <s(n) , where n=lwl.
We shall use the notation STA-(s,t,a) resp. STA,,(s,t,a) to indicate that the input
configuration is required to be existential resp. universal . As special cases we
obtain the alternating time class ATIME(t) =STA(-,t,-) and the alternating space
class ASPACE(s) =STA(s,-,-) . The time class with constant alternation CATIME(t) is
defined as U<STA-(-,t,k) :k€N> . Similarly the time class with linear alternation
LATIME(t) is defined as STA^(-,t,id) .

Alternating time bridges the gap between nondetenninistic time and deterministic
space as Chandra,Kozen and Stockmeyer [5] have shown :

( * ) NTIME(t) cCATIME(t) cLATIME(t) cATIME(t) cDSPACE(t) for t^id

(**) ALOGSPACE=PnME , APTIME = PSPACE , APSPACE = EXPTIME
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