Mémoires de la S. M. F.

ALEXANDER PRESTEL

Model theory of fields : an application to positive semidefinite polynomials

Mémoires de la S. M. F. 2^{*e*} *série*, tome 16 (1984), p. 53-65 http://www.numdam.org/item?id=MSMF_1984_2_16_53_0

© Mémoires de la S. M. F., 1984, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France 2° série, mémoire n° 16, 1984, p.53-65

MODEL THEORY OF FIELDS:

AN APPLICATION TO POSITIVE SEMIDEFINITE POLYNOMIALS

Alexander Prestel

<u>Abstract</u>: Using some model theoretic arguments, we will settle the following problem raised by E. Becker: Which polynomials $f \in \mathbb{R}[X_1, \ldots, X_n]$ can be written as a finite sum of 2m-th powers of rational functions in X_1, \ldots, X_n over \mathbb{R} ?

INTRODUCTION

From Artin's solution of Hilbert's 17-th Problem, it is clear that polynomials $f \in \mathbb{R}[X_1, \ldots, X_n]$ which can be written as a sum of squares of rational functions in $\overline{X} = (X_1, \ldots, X_n)$ over \mathbb{R} are exactly the positive semidefinite ones, i.e. those satisfying $f(\overline{a}) \ge 0$ for all $\overline{a} = (a_1, \ldots, a_n) \in \mathbb{R}^n$. In view of this result, the question naturally arises under what conditions such an f can be even written as a sum of 2m-th powers of rational functions in \overline{X} over \mathbb{R} .

Denoting for a ring R , by ΣR^{S} the set of finite sums of s-th powers of elements from R , the question then is: When does f $\in \Sigma \mathbb{R} (\bar{X})^{2m}$ hold? For odd exponents the answer is trivial, since $\mathbb{R} (\bar{X}) = \Sigma \mathbb{R} (\bar{X})^{2m+1}$ by a result of Joly (see [J], Théorème (2.8)). 0037-9484/84 03 53 13/\$ 3.30/ © Gauthier-Villars

A. PRESTEL

We will give the following answer for homogeneous^{*)} polynomials f: THEOREM 1 Let $f \in \mathbb{R}[X_1, \ldots, X_n]$ be homogeneous and positive semidefinite. Then $f \in \Sigma \mathbb{R}(\bar{X})^{2m}$ if and only if $2m | \deg f$ and $2m | \operatorname{ord} f(p_1, \ldots, p_n)$ for all polynomials $p_1, \ldots, p_n \in \mathbb{R}[t]$ with at least one p_1 having a non-vanishing absolute term.

Here ord h(t) is the order of h(t) at the place t = 0, i.e. the maximal r such that t^{r} divides h(t). The proof of this theorem ultimately makes use of the Ax-Kochen - Ershov Theorem on the model completeness of certain classes of henselian fields.

Clearly, one is tempted to ask the corresponding question for polynomials $f \in K_0[X_1, \ldots, X_n]$ where K_0 is some other formally real field. The main theorem of this note refers to a fixed archimedean ordering on K_0 . Thus, in particular, if R is some <u>archi-</u> <u>medean</u> real closed field, we will have the same situation as in Theorem 1 . All attempts to generalize this result to non-archimedean real closed fields failed, and, as it finally turned out, must fail.

In case Theorem 1 would hold for all real closed fields R and for n = 2, by the Compactness Theorem one could conclude that for each $d \in \mathbb{N}$, there were some formula $\varphi(a_0, \ldots, a_d)$, in the language of rings, such that for all real closed fields R we could get (after dehomogenizing)

 $\mathsf{R} \models \varphi(\mathsf{a}_{o}, \ldots, \mathsf{a}_{d}) \quad \text{iff} \quad \mathsf{a}_{o} + \ldots + \left. \mathsf{a}_{d} \mathsf{X}^{d} \in \Sigma \mathsf{R}(\mathsf{X})^{2m} \right.$

Equivalently, one could find bounds N and s, depending only on d and m such that, for all $a_0, \ldots, a_d \in R$, $f = a_0 + \ldots + a_d x^d \in \Sigma R(x)^{2m}$

^{*)} This is no restriction of the generality.

implies

$$f = \sum_{i=1}^{N} \frac{g_i(x)^{2m}}{h_i(x)^{2m}} \text{ and } \deg g_i, \deg h_i \leq s.$$

This, however, turns out to be wrong in general. Using a simple non-standard argument (i.e. an application of the Compactness Theorem), we will prove

THEOREM 2 For all
$$m \ge 2$$
 and all $n \ge 0$,
 $x^{2m} + nx^{2} + 1 = h^{(n)}(x)^{-2m} \sum_{i=1}^{N(n)} g_{i}^{(n)}(x)^{2m}$. Moreover, if n
tends to infinity, so does $N(n)$ or deg $h^{(n)}$.

By this theorem and the remarks above, Theorem 1 cannot hold for arbitrary real closed fields R. In fact, Theorem 2 shows that, for $m \ge 2$, the property $f \in \Sigma R(\bar{X})^{2m}$ is not elementary in the coefficients of f. This should be seen in contrast to the case m = 1. In this case, $f \in \Sigma R(\bar{X})^2$ can be expressed by the formula

$$\forall a_1, \dots, a_n \exists b f(a_1, \dots, a_n) = b^2$$

saying that f is positive semidefinite.

1. On Theorem 1

In [1] Becker developed a general theory of sums of 2m-th powers in formally real fields. From this theory ([1],Satz 2.14) one obtains the following characterization: Let K be formally real. Then for any $a \in K$:

 $a \in \Sigma K^{2m} \text{ iff } \begin{cases} a \in \Sigma K^2 \text{ and } 2m | v(a) \text{ for all} \\ \text{valuations } v \text{ of } K \text{ with formally} \\ \text{real residue field } \overline{K}_v \text{ .} \end{cases}$

A. PRESTEL

A valuation here and in what follows may have an arbitrary ordered abelian group Γ as group of values. By 2m|v(a) we then mean that there is some $b \in K$ satisfying $2m v(b) = v(b^{2m}) = v(a)$. Concerning the theory of valuations we refer the reader to [3] and [4].

The first lemma will be a slight generalization of the above equivalence. For its proof we need some notations and results from [1].

A subset S of K is called a preordering of level 2m if (i) $S + S \subset S$, $S \cdot S \subset S$, $K^{2m} \subset S$, $-1 \notin S$.

In case m = 1, we obtain the usual notion of preordering (cf. [7]). A preordering S of level 2m is called complete if

(ii)
$$a^2 \in S$$
 implies $a \in S \cup -S$.

In what follows, complete preorderings will always be denoted by P. If m = 1, completeness of P just means P U - P = K. Thus in this case, P is an ordering in the usual sense. In general,

a ≤_p b iff b-a∈P

defines a partial ordering on K , which for level 2 is linear. By [1], Section 1, for any preordering S of level 2m we have

(iii)
$$S = \bigcap_{S \subset P} P$$

where P ranges over complete preorderings of level 2m. From [1], Section 2, we further obtain that for every complete preordering P of level 2m,

(iv) $A_p = \{x \in K \mid -n \leq_p x \leq_p n \text{ for some } n \in \mathbb{N}\}$ defines a valuation ring on K such that $1 + M_p \subset P$ and $\overline{P \cap A_p}$ is an ordering (of level 2) of the residue field \overline{K}_p .

56