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MODEL THEORY OF FIELDS:

AN APPLICATION TO POSITIVE SEMIDEFINITE POLYNOMIALS

Alexander Prestel

Abstract: Using some model theoretic arguments, we will settle the
following problem raised by E. Becker: Which polynomials
f € 3 R [ X - , . . . , X ] can be written as a finite sum of 2m-th powers
of rational functions in X- , . . . , X over ]R ?

INTRODUCTION

From Artin's solution of Hilbert's 17-th Problem, it is clear

that polynomials f € 3 R [ X . . , . . . , X ] which can be written as a sum of

squares of rational functions in X = (X . , . . . ,X ) over ]R are exactly

the positive semidefinite ones, i.e. those satisfying f ( a ) > 0 for

all a = (a. , . . . ,a ) € 3R11 . In view of this result, the question1 n
naturally arises under what conditions such an f can be even written as

a sum of 2m-th powers of rational functions in X over 3R .

Denoting for a ring R , by Z Rs the set of finite sums of

s-th powers of elements from R , the question then is: When does

f € I ]R (X) hold? For odd exponents the answer is trivial, since

3R (X) = £ 3R (X)2 m + 1 by a result of Joly (see [J] , Theoreme ( 2 . 8 ) ) .
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A. PRESTEL

We will give the following answer for homogeneous polynomials f :

THEOREM 1 Let f € 3R [ X ^ , . . . , X ^ ] be homogeneous and positive semi-
definite. Then f € I -5R ( X ) 2m if and only if 2ml deg f and
2mlord f ( p . , . . . , p ) for all polynomials p . , . . . , p € ]R [ t] with
at least one p . having a non-vanishing absolute term.

Here ord h ( t ) is the order of h ( t ) at the place t = 0 , i . e .
the maximal r such that 1'^ divides h ( t ) . The proof of this
theorem ultimately makes use of the Ax-Kochen - Ershov Theorem on the
model completeness of certain classes of henselian fields.

Clearly, one is tempted to ask the corresponding question for
polynomials f € K [ X < . , . . . , X ] where K is some other formally
real field. The main theorem of this note refers to a fixed archi-
medean ordering on K . Thus, in particular, if R is some archi-
medean real closed field, we will have the same situation as in
Theorem 1 . All attempts to generalize this result to non-archimedean
real closed fields failed, and, as it finally turned out, must fail.

In case Theorem 1 would hold for all real closed fields R and
for n = 2 , by the Compactness Theorem one could conclude that for
each d € ]N , there were some formula 4) ( a , . . . , a , ) , in the language
of rings, such that for all real closed fields R we could get
(after dehomogenizing)

R t= 4)(a . . . . . a , ) iff a + . . . + â  e Z R ( X ) 2 m .

Equivalently, one could find bounds N and s , depending only on d
and m such that, for all a , . . . , a , € R , f = a + . . . + a^X6' € IRtX^

*) This is no restriction of the generality.
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implies

N _ ,^2mrr ( y \f = I ̂ i^ and deg g. , deg h. < s .
1=1 h^X)2111

This, however, turns out to be wrong in general. Using a simple

non-standard argument (i.e. an application of the Compactness

Theorem), we will prove

THEOREM 2 For all m > 2 and all n > 0 ,

X21^ nx2^ = h^xr^^g.^X)2111. Moreover, if n
i=1 1

tends to infinity, so does N ( n ) or_ deg h '7 .

By this theorem and the remarks above. Theorem 1 cannot hold

for arbitrary real closed fields R . In fact. Theorem 2 shows that,

for m > 2 , the property 'f € Z R t X ) 2 1 1 1 is not elementary in the

coefficients of f . This should be seen in contrast to the case

m = 1 .In this case, f € £ R ( X ) can be expressed by the formula

V a ^ , . . . , a ^ 3 b f (a^ , . . . ,a^ ) = b ,

saying that f is positive semidefinite.

1 . On Theorem 1

In [ 1 ] Becker developed a general theory of sums of 2m-th
powers in formally real fields. From this theory ( [ 1 ],Satz 2 . 1 4 )
one obtains the following characterization: Let K be formally real.
Then for any a € K :

a € £K2 and 2 m | v ( a ) for all
a e IK2111 iff { valuations v of K with formally

real residue field K .
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A valuation here and in what follows may have an arbitrary ordered
abelian group r as group of values. By 2 m | v ( a ) we then mean
that there is some b € K satisfying 2m v ( b ) = v^2111) = v ( a ) .
Concerning the theory of valuations we refer the reader to [ 3 ] and [ 4 ] .

The first lemma will be a slight generalization of the above
equivalence. For its proof we need some notations and results f r o m [ 1 ] .

A subset S of K is called a preordering of level 2m if

( i ) S + Scs , S-S<=S , K^CS , -1 $ S .

In case m = 1 , we obtain the usual notion of preordering ( c f . [ 7 ] ) .
A preordering S of level 2m is called complete if

(ii) a2 6 S implies a € S U -S .

In what follows, complete preorderings will always be denoted by P .
If m = 1 , completeness of P just means P U -P = K . Thus in this
case, P is an ordering in the usual sense. In general,

a ^ b iff b - a 6 P

defines a partial ordering on K , which for level 2 is linear.
By [ 1 ] , Section 1 , for any preordering S of level 2m we have

(iii) S = f } P
S <=p

where P ranges over complete preorderings of level 2m .
From [ 1 ] , Section 2, we further obtain that for every complete
preordering P of level 2m ,

( iv) A = {x € K I -n <- x ̂  n for some n € 3N} defines a
valuation ring on K such that '1 +M- c: P and P H A

is an ordering (of level 2) of the residue field K .
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