

# WHEN IS A RIESZ DISTRIBUTION A COMPLEX MEASURE?

## Alan D. Sokal

Tome 139 Fascicule 4

# 2011

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Publié avec le concours du Centre national de la recherche scientifique pages 519-534

### WHEN IS A RIESZ DISTRIBUTION A COMPLEX MEASURE?

BY ALAN D. SOKAL

ABSTRACT. — Let  $\mathscr{R}_{\alpha}$  be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by  $\alpha \in \mathbb{C}$ . I give an elementary proof of the necessary and sufficient condition for  $\mathscr{R}_{\alpha}$  to be a locally finite complex measure (= complex Radon measure).

RÉSUMÉ (Une distribution de Riesz, quand est-elle mesure complexe ?)

Soit  $\mathscr{R}_{\alpha}$  la distribution de Riesz sur une algèbre de Jordan euclidienne simple, paramétrisée par  $\alpha \in \mathbb{C}$ . Je donne une démonstration élémentaire de la condition nécessaire et suffisante pour que  $\mathscr{R}_{\alpha}$  soit une mesure complexe localement finie (= mesure de Radon complexe).

### 1. Introduction

In the theory of harmonic analysis on Euclidean Jordan algebras (or equivalently on symmetric cones) [12], a central role is played by the *Riesz distributions*  $\mathcal{R}_{\alpha}$ , which are tempered distributions that depend analytically on a

Texte reçu le 16 juin 2009, révisé et accepté le 20 mai 2010.

ALAN D. SOKAL, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 USA and Department of Mathematics, University College London, London WC1E 6BT, England • *E-mail* : sokal@nyu.edu

<sup>2000</sup> Mathematics Subject Classification. — 43A85; 17A15, 17C99, 28C10, 44A10, 46F10, 47G10, 60E05, 62H05.

Key words and phrases. — Riesz distribution, Jordan algebra, symmetric cone, Gindikin's theorem, Wallach set, tempered distribution, positive measure, Radon measure, relatively invariant measure, Laplace transform.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE0037-9484/2011/519/\$5.00© Société Mathématique de France

parameter  $\alpha \in \mathbb{C}$ . One important fact about the Riesz distributions is the necessary and sufficient condition for positivity, due to Gindikin [13]:

THEOREM 1.1. — [12, Theorem VII.3.1] Let V be a simple Euclidean Jordan algebra of dimension n and rank r, with  $n = r + \frac{d}{2}r(r-1)$ . Then the Riesz distribution  $\mathcal{R}_{\alpha}$  on V is a positive measure if and only if  $\alpha = 0, \frac{d}{2}, \ldots, (r-1)\frac{d}{2}$  or  $\alpha > (r-1)\frac{d}{2}$ .

The "if" part is fairly easy, but the "only if" part is reputed to be deep [13, 12, 20].<sup>(1)</sup>

The purpose of this note is to give a completely elementary proof of the "only if" part of Theorem 1.1, and indeed of the following strengthening:

THEOREM 1.2. — Let V be a simple Euclidean Jordan algebra of dimension n and rank r, with  $n = r + \frac{d}{2}r(r-1)$ . Then the Riesz distribution  $\mathcal{R}_{\alpha}$  on V is a locally finite complex measure [= complex Radon measure] if and only if  $\alpha = 0, \frac{d}{2}, \ldots, (r-1)\frac{d}{2}$  or  $\operatorname{Re} \alpha > (r-1)\frac{d}{2}$ .

This latter result is also essentially known [18, Lemma 3.3], but the proof given there requires some nontrivial group theory.

The idea of the proof of Theorem 1.2 is very simple: A distribution defined on an open subset  $\Omega \subset \mathbb{R}^n$  by a function  $f \in L^1_{loc}(\Omega)$  can be extended to all of  $\mathbb{R}^n$  as a locally finite complex measure only if the function f is locally integrable also at the boundary of  $\Omega$  (Lemma 2.1); furthermore, this fact survives analytic continuation in a parameter (Proposition 2.3). In the case of the Riesz distribution  $\mathcal{R}_{\alpha}$ , a simple computation using its Laplace transform (Lemma 3.4) plus a bit of extra work (Lemma 3.5) allows us to determine the allowed set of  $\alpha$ , thereby proving Theorem 1.2.

Theorem 1.2 thus states a necessary and sufficient condition for  $\mathscr{R}_{\alpha}$  to be a distribution of order 0. It would be interesting, more generally, to determine the order of the Riesz distribution  $\mathscr{R}_{\alpha}$  for each  $\alpha \in \mathbb{C}$ .

It would also be interesting to know whether this approach is powerful enough to handle the multiparameter Riesz distributions  $\mathscr{R}_{\alpha}$  with  $\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{C}^r$  [12, Theorem VII.3.2] and/or the Riesz distributions on homogeneous cones that are not symmetric (i.e. not self-dual) and hence do not arise from a Euclidean Jordan algebra [13, 20].

In an Appendix I comment on a beautiful but little-known elementary proof of Theorem 1.1 — which does not extend, however, to Theorem 1.2 — due to Shanbhag [27] and Casalis and Letac [9].

<sup>&</sup>lt;sup>(1)</sup> The set of values of  $\alpha$  described in Theorem 1.1 is the so-called Wallach set [29, 30, 21, 10, 11, 12].

#### 2. A general theorem on distributions

We assume a basic familiarity with the theory of distributions [26, 19] and recall some key notations and facts.

For each open set  $\Omega \subseteq \mathbb{R}^n$ , we define the space  $\mathcal{D}(\Omega)$  of  $C^{\infty}$  functions having compact support in  $\Omega$ , the corresponding space  $\mathcal{D}'(\Omega)$  of distributions, and the space  $\mathcal{D}'^k(\Omega)$  of distributions of order  $\leq k$ . In particular, the space  $\mathcal{D}'^0(\Omega)$ consists of the distributions that are given locally (i.e. on every compact subset of  $\Omega$ ) by a finite complex measure.

Let  $f: \Omega \to \mathbb{C}$  be a measurable function, and extend it to all of  $\mathbb{R}^n$  by setting  $f \equiv 0$  outside  $\Omega$ . We say that  $f \in L^1_{loc}(\Omega)$  if, for every  $x \in \Omega$ , f is (absolutely) integrable on some neighborhood of x. Any  $f \in L^1_{loc}(\Omega)$  defines a distribution  $T_f \in \mathcal{D}^{\prime 0}(\Omega)$  by

(1) 
$$T_f(\varphi) = \int \varphi(x) f(x) dx$$
 for all  $\varphi \in \mathcal{D}(\Omega)$ .

We are interested in knowing under what circumstances the distribution  $T_f \in \mathcal{D}^{\prime 0}(\Omega)$  can be extended to a distribution  $\widetilde{T}_f \in \mathcal{D}^{\prime 0}(\mathbb{R}^n)$ , i.e. one that is locally everywhere on  $\mathbb{R}^n$  a finite complex measure.

LEMMA 2.1. — Let  $f: \Omega \to \mathbb{C}$  be in  $L^1_{loc}(\Omega)$ , and let  $T_f \in \mathcal{D}^{\prime 0}(\Omega)$  be the corresponding distribution. Then the following are equivalent:

- (a)  $f \in L^1_{loc}(\overline{\Omega})$ , i.e. for every  $x \in \overline{\Omega}$ , f is integrable on some neighborhood of x.<sup>(2)</sup>
- (b) There exists a distribution  $\widetilde{T}_f \in \mathcal{D}^{\prime 0}(\mathbb{R}^n)$  that extends  $T_f$  and is supported on  $\overline{\Omega}$ .
- (c) There exists a distribution  $\widetilde{T}_f \in \mathcal{D}^{\prime 0}(\mathbb{R}^n)$  that extends  $T_f$ .

*Proof.* — (a)  $\implies$  (b): It suffices to define  $\widetilde{T}_f(\varphi) = \int_{\Omega} \varphi(x) f(x) dx$  for all  $\varphi \in \mathcal{D}(\mathbb{R}^n)$ .

(b)  $\implies$  (c) is trivial.

(c)  $\Longrightarrow$  (a): By hypothesis, for every  $x \in \partial \Omega$  and every compact neighborhood  $K \ni x$ , there exists a finite complex measure  $\mu_K$  supported on K such that  $\widetilde{T}_f(\varphi) = \int \varphi \, d\mu_K$  for every  $\varphi \in \mathcal{D}(\mathbb{R}^n)$  with support in K. But since  $\widetilde{T}_f$  extends  $T_f$ , the restriction of  $\mu_K$  to every compact subset of  $K \cap \Omega$  must coincide with the measure  $f(x) \, dx$ . Since  $K \cap \Omega$  is  $\sigma$ -compact, this implies that  $\int |f(x)| \, dx = |\mu_K| (K \cap \Omega) < \infty$ , so that f is integrable in a neighborhood  $K \cap \Omega$ .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

<sup>&</sup>lt;sup>(2)</sup> Since this has already been assumed for  $x \in \Omega$ , the content of hypothesis (a) is that it should hold also for  $x \in \partial \Omega$ .

We now extend this idea to allow for analytic dependence on a parameter. Let  $\Omega$  be an open set in  $\mathbb{R}^n$ , let D be a connected open set in  $\mathbb{C}^m$ , and let  $F: \Omega \times D \to \mathbb{C}$  be a continuous function such that  $F(x, \cdot)$  is analytic on D for each  $x \in \Omega$ . Then, for each  $\lambda \in D$ , define

(2) 
$$T_{\lambda}(\varphi) = \int \varphi(x) F(x,\lambda) dx$$
 for all  $\varphi \in \mathcal{D}(\Omega)$ .

LEMMA 2.2. — With F as above, the map  $\lambda \mapsto T_{\lambda}$  is analytic from D into  $\mathcal{D}'(\Omega)$  in the sense that  $\lambda \mapsto T_{\lambda}(\varphi)$  is analytic for all  $\varphi \in \mathcal{D}(\Omega)$ .

*Proof.* — This is an immediate consequence of the hypotheses on F together with standard facts about scalar-valued analytic functions in  $\mathbb{C}$  (either Morera's theorem or the Cauchy integral formula) and  $\mathbb{C}^m$  (e.g. the weak form of Hartogs' theorem).

Remark. — Weak analyticity in the sense used here is actually equivalent to strong analyticity: see e.g. [15, pp. 37–39, Théorème 1 and Remarque 1] [5, Theorems 3.1 and 3.2] [14, Theorem 1]. Indeed, our hypothesis on F is equivalent to the even stronger statement that the map  $\lambda \mapsto F(\cdot, \lambda)$  is analytic from D into the space  $C^0(\Omega)$  of continuous functions on  $\Omega$ , equipped with the topology of uniform convergence on compact subsets [15, p. 41, example (a)]. But we do not need any of these facts; weak analyticity is enough for our purposes.

Putting together these two lemmas, we obtain:

PROPOSITION 2.3. — Let F be as above, let  $D_0 \subseteq D$  be a nonempty open set, and let  $\lambda \mapsto \widetilde{T}_{\lambda}$  be a (weakly) analytic map of D into  $\mathscr{D}'(\mathbb{R}^n)$  such that  $\widetilde{T}_{\lambda}$ extends  $T_{\lambda}$  for each  $\lambda \in D_0$ . Then, for each  $\lambda \in D$ , we have:

(a) T<sub>λ</sub> extends T<sub>λ</sub>.
(b) If T<sub>λ</sub> ∈ D'<sup>0</sup>(ℝ<sup>n</sup>), then F(·, λ) ∈ L<sup>1</sup><sub>loc</sub>(Ω).

*Proof.* — (a) This is immediate by analytic continuation: for each  $\varphi \in \mathcal{D}(\Omega)$ , both  $\tilde{T}_{\lambda}(\varphi)$  and  $T_{\lambda}(\varphi)$  are (by hypothesis and Lemma 2.2, respectively) analytic functions of  $\lambda$  on D that coincide on  $D_0$ , therefore they must coincide on all of D.

(b) This is immediate from (a) together with Lemma 2.1.  $\Box$ 

We shall apply this setup with  $F(x, \lambda) = f(x)^{\lambda}$  where  $f: \Omega \to (0, \infty)$  is a continuous function; in fact, we shall take f to be a polynomial.

Tome  $139 - 2011 - n^{o} 4$