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WHEN IS A RIESZ DISTRIBUTION A COMPLEX MEASURE?

by Alan D. Sokal

Abstract. — Let Rα be the Riesz distribution on a simple Euclidean Jordan algebra,
parametrized by α ∈ C. I give an elementary proof of the necessary and sufficient
condition for Rα to be a locally finite complex measure (= complex Radon measure).

Résumé (Une distribution de Riesz, quand est-elle mesure complexe ?)
Soit Rα la distribution de Riesz sur une algèbre de Jordan euclidienne simple,

paramétrisée par α ∈ C. Je donne une démonstration élémentaire de la condition
nécessaire et suffisante pour que Rα soit une mesure complexe localement finie (=
mesure de Radon complexe).

1. Introduction

In the theory of harmonic analysis on Euclidean Jordan algebras (or equiv-
alently on symmetric cones) [12], a central role is played by the Riesz distri-
butions Rα, which are tempered distributions that depend analytically on a
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parameter α ∈ C. One important fact about the Riesz distributions is the
necessary and sufficient condition for positivity, due to Gindikin [13]:

Theorem 1.1. — [12, Theorem VII.3.1] Let V be a simple Euclidean Jordan
algebra of dimension n and rank r, with n = r + d

2r(r − 1). Then the Riesz
distribution Rα on V is a positive measure if and only if α = 0, d2 , . . . , (r− 1)d2
or α > (r − 1)d2 .

The “if” part is fairly easy, but the “only if” part is reputed to be deep [13, 12,
20].(1)

The purpose of this note is to give a completely elementary proof of the
“only if” part of Theorem 1.1, and indeed of the following strengthening:

Theorem 1.2. — Let V be a simple Euclidean Jordan algebra of dimension
n and rank r, with n = r + d

2r(r − 1). Then the Riesz distribution Rα on V

is a locally finite complex measure [= complex Radon measure] if and only if
α = 0, d2 , . . . , (r − 1)d2 or Reα > (r − 1)d2 .

This latter result is also essentially known [18, Lemma 3.3], but the proof given
there requires some nontrivial group theory.

The idea of the proof of Theorem 1.2 is very simple: A distribution defined
on an open subset Ω ⊂ Rn by a function f ∈ L1

loc(Ω) can be extended to
all of Rn as a locally finite complex measure only if the function f is locally
integrable also at the boundary of Ω (Lemma 2.1); furthermore, this fact sur-
vives analytic continuation in a parameter (Proposition 2.3). In the case of
the Riesz distribution Rα, a simple computation using its Laplace transform
(Lemma 3.4) plus a bit of extra work (Lemma 3.5) allows us to determine the
allowed set of α, thereby proving Theorem 1.2.

Theorem 1.2 thus states a necessary and sufficient condition for Rα to be a
distribution of order 0. It would be interesting, more generally, to determine
the order of the Riesz distribution Rα for each α ∈ C.

It would also be interesting to know whether this approach is pow-
erful enough to handle the multiparameter Riesz distributions Rα with
α = (α1, . . . , αr) ∈ Cr [12, Theorem VII.3.2] and/or the Riesz distributions on
homogeneous cones that are not symmetric (i.e. not self-dual) and hence do
not arise from a Euclidean Jordan algebra [13, 20].

In an Appendix I comment on a beautiful but little-known elementary proof
of Theorem 1.1 — which does not extend, however, to Theorem 1.2 — due to
Shanbhag [27] and Casalis and Letac [9].

(1) The set of values of α described in Theorem 1.1 is the so-called Wallach set [29, 30, 21,
10, 11, 12].
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2. A general theorem on distributions

We assume a basic familiarity with the theory of distributions [26, 19] and
recall some key notations and facts.

For each open set Ω ⊆ Rn, we define the space D(Ω) of C∞ functions having
compact support in Ω, the corresponding space D′(Ω) of distributions, and the
space D′k(Ω) of distributions of order ≤ k. In particular, the space D′0(Ω)

consists of the distributions that are given locally (i.e. on every compact subset
of Ω) by a finite complex measure.

Let f : Ω→ C be a measurable function, and extend it to all of Rn by setting
f ≡ 0 outside Ω. We say that f ∈ L1

loc(Ω) if, for every x ∈ Ω, f is (absolutely)
integrable on some neighborhood of x. Any f ∈ L1

loc(Ω) defines a distribution
Tf ∈ D′0(Ω) by

(1) Tf (ϕ) =

∫
ϕ(x) f(x) dx for all ϕ ∈ D(Ω) .

We are interested in knowing under what circumstances the distribution Tf ∈
D′0(Ω) can be extended to a distribution T̃f ∈ D′0(Rn), i.e. one that is locally
everywhere on Rn a finite complex measure.

Lemma 2.1. — Let f : Ω → C be in L1
loc(Ω), and let Tf ∈ D′0(Ω) be the

corresponding distribution. Then the following are equivalent:

(a) f ∈ L1
loc(Ω), i.e. for every x ∈ Ω, f is integrable on some neighborhood

of x.(2)

(b) There exists a distribution T̃f ∈ D′0(Rn) that extends Tf and is supported
on Ω.

(c) There exists a distribution T̃f ∈ D′0(Rn) that extends Tf .

Proof. — (a) =⇒ (b): It suffices to define T̃f (ϕ) =
∫

Ω
ϕ(x) f(x) dx for all

ϕ ∈ D(Rn).
(b) =⇒ (c) is trivial.
(c) =⇒ (a): By hypothesis, for every x ∈ ∂Ω and every compact neighbor-

hood K 3 x, there exists a finite complex measure µK supported on K such
that T̃f (ϕ) =

∫
ϕdµK for every ϕ ∈ D(Rn) with support in K. But since

T̃f extends Tf , the restriction of µK to every compact subset of K ∩ Ω must
coincide with the measure f(x) dx. Since K ∩Ω is σ-compact, this implies that∫
K∩Ω

|f(x)| dx = |µK |(K ∩ Ω) < ∞, so that f is integrable in a neighborhood

of x.

(2) Since this has already been assumed for x ∈ Ω, the content of hypothesis (a) is that it
should hold also for x ∈ ∂Ω.
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We now extend this idea to allow for analytic dependence on a parameter.
Let Ω be an open set in Rn, let D be a connected open set in Cm, and let
F : Ω×D → C be a continuous function such that F (x, · ) is analytic on D for
each x ∈ Ω. Then, for each λ ∈ D, define

(2) Tλ(ϕ) =

∫
ϕ(x)F (x, λ) dx for all ϕ ∈ D(Ω) .

Lemma 2.2. — With F as above, the map λ 7→ Tλ is analytic from D into
D′(Ω) in the sense that λ 7→ Tλ(ϕ) is analytic for all ϕ ∈ D(Ω).

Proof. — This is an immediate consequence of the hypotheses on F together
with standard facts about scalar-valued analytic functions in C (either Morera’s
theorem or the Cauchy integral formula) and Cm (e.g. the weak form of Hartogs’
theorem).

Remark. — Weak analyticity in the sense used here is actually equivalent to
strong analyticity: see e.g. [15, pp. 37–39, Théorème 1 and Remarque 1] [5,
Theorems 3.1 and 3.2] [14, Theorem 1]. Indeed, our hypothesis on F is equiva-
lent to the even stronger statement that the map λ 7→ F ( · , λ) is analytic from
D into the space C0(Ω) of continuous functions on Ω, equipped with the topol-
ogy of uniform convergence on compact subsets [15, p. 41, example (a)]. But
we do not need any of these facts; weak analyticity is enough for our purposes.

Putting together these two lemmas, we obtain:

Proposition 2.3. — Let F be as above, let D0 ⊆ D be a nonempty open set,
and let λ 7→ T̃λ be a (weakly) analytic map of D into D′(Rn) such that T̃λ
extends Tλ for each λ ∈ D0. Then, for each λ ∈ D, we have:

(a) T̃λ extends Tλ.
(b) If T̃λ ∈ D′0(Rn), then F ( · , λ) ∈ L1

loc(Ω).

Proof. — (a) This is immediate by analytic continuation: for each ϕ ∈ D(Ω),
both T̃λ(ϕ) and Tλ(ϕ) are (by hypothesis and Lemma 2.2, respectively) analytic
functions of λ on D that coincide on D0, therefore they must coincide on all
of D.

(b) This is immediate from (a) together with Lemma 2.1.

We shall apply this setup with F (x, λ) = f(x)λ where f : Ω → (0,∞) is a
continuous function; in fact, we shall take f to be a polynomial.
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