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ON SOME SERIES OF REPRESENTATIONS RELATED TO SYMMETRIC SPACES.

by

H . Schlichtkrull

In this paper, the series of representations constructed by
M. Flensted-Jensen in [ 3 ] and [ 4 ] are considered. The main results of
[ 8 ] , on lowest K-types and Langlands parameters of the representa-
tions of [ 3 ] in the equal rank case, are generalized to the other
series as well. The representations are identified with subquotients
of parabolically induced representations. The parabolic subgroup we
use, P = MAN, is cuspidal, and moreover, the symmetric space
M/MnH satisfies the equal rank condition. The inducing representa-
tion T ® \; ® 1 of MAN is given by a Flensted-Jensen representa-
tion TT of M , and thus the determination of Langlands parameters
is reduced to Flensted-Jensen representations of M . Further, these
results imply unitarity of the representations under certain condi-
tions (see Theorem 4 ) .

Since the proofs of some of our results are rather straight-
forward generalizations of those of [ 8 ] , we do not give all the de-
tails in these cases, but refer to [ 8 ] in stead.

Our results generalize some results of G . Olafsson [ 5 ] , [ 6 ] (in
fact. Theorem 1 and 3 below were obtained before we received [ 5 ] and
[ 6 ] ) .

The author expresses his gratitude to the organizers of the
conference for the invitation to participate.
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1 . Notation. Let G/H be a semisimple symmetric space with G and
H connected and linear. Let T be the corresponding involution, and
let 6 be a commuting Cartan involution. Denote by 9 = h. ® q and
g = k ® p the corresponding decompositions of the Lie algebra g ,
and let K be the maximal compact subgroup of G with Lie algebra
fe . Let G. denote the analytic subgroup of G with Lie algebra

3 - - f e n ^ + p n q .
Choose a 9-invariant maximal abelian subspace A of q , and

put t = A° n fe . Let A c a * be the set of roots of a. in g^ ,
and choose a positive system A which is 9-compatible, i.e.
a € A'*' and a | . ^ 0 implies 9a € ^ . Put p = p ( A ) =

\ I .(dim ^)a € ̂  .

Let t = 9^ be the centralizer of ^ in g , and let ^
denote the orthocomplement of t in i (w.r.t. the Killing form
of g } . Choose t^ maximal abelian in i C\ k n q , then t = t + t^

is maximal abelian in k H q . Let A^ = A(?^k^), A^ =
{a € A^ I a |^ ^ 0} and A^^ = (a € A^ I a |^ = 0). Put ^-i^
( a € A | 3 e € A ' ( ' : e i . . = a [ ^ } and choose a positive system A^ ̂

for the root system A^ ^ , then A^ = A^^ U A^ is a positive
system for A^ . Define p^ = P(A^) = ^ I ..(dim fe^) a € i<* and
p = p(A'*" - ) similarly. Notice that a c
c f i c» i

p - I .. does not vanish in general, but at least we have:c f i \-^

Lemma 1 . <p ^ , a > = 0 (o/i aZZ a € A^ .

proof; Let a € A ^ , and denote by s^ reflection in a . Then

s (A"*' , ) = A* , and hence the lemma. °a c i \ c i i

For each \ € a°* we define u^ € ?^ by the following

equations:

( 1 ) (u^2p^) |^ = ( ^P) | ^ and (u^2p^ ^ ^ ) | ̂  = 0 .

2. Flensted-Jensen's representations. Let c ^ 0 be the smallest

possible constant such that [ 4 ] Theorem 1 holds, and define
Aca°* to be the set of those \ C a^* satisfying the following

conditions (2 ) and ( 3 ) :
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( 2 ) R e < X , a > > c for all a € A* with a | . = 0

r <}l\fa> + +[ ̂ 7a- € 2Z for an a € ̂
( 3 ) -}

^ U , ( X ) € % for X € t , exp 27riX = e .

For each X € A Flensted-Jensen 14 ) defines a function
4̂  € C (G/H) by an integral formula (for the dual function on the
dual symmetric space G /H ) , and the following properties hold for
these functions:

a) The representation of K generated by 4̂  is finite
dimensional and irreducible. Denoting by 6 , the contragredient of
this representation of K , 6 , is spherical for K/K OH and has
highest weight u , .

(We have not included Condition ( 9 ) of [ 4 ] , since it is redundant
by Lemma 1 ) .

K ODb) 4̂  is a joint eigenfunction for U ( q ) acting on C (G/H)A
from the left. The eigenvalues are determined as follows: There is a

K 0 Kunique homomorphism y : U ( g ) -» U ( a ) such that for u € U ( g ) :

( 4 ) u - y ( u ) € (Znfe)^ U ( 9 ) + U ( f l ) (^ + n ° )

where n = I . 5° . Then u4/, = y ( u ) ( - X - p ) 4 ; . .
C A ' <»• n- Aa6A

Remark. In the sequel we use only properties a) and b) of the func-
tions ^ . If 4̂  can be defined ( e . g . by analytic continuation
in X ) , such that a) and b) still hold for some \ which does
not satisfy ( 2 ) , then our results can be extended to these parameters
as well.

From a) and b) it follows by [ 2 ] Proposition 9 . 1 . 1 0 ( i i i ) that
the K-type u , has multiplicity one in the ^-module generated by

\4^, . Consequently, this module has a unique irreducible quotient T
which contains u^ .

If t is maximal abelian in fe n q , then 4 ; , is the same as
the function defined in [ 3 ] . In this case c = 0 , but ( 2 ) is not
necessary for defining 4/< . In fact ( 2 ) is not serious since one
can prove that then ^ , = 4̂  for all elements s from the Weyl
group of the root system { o € A I o ! . . = 0 ) . The series of ( 9 » K ) -
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modules T is in this case called the fundamental series for the

symmetric space G/H .
If we can choose a. such that t = a , we say that G/H

satisfies the equal rank condition. If furthermore <\,a> > 0 for
all a € A+ , then 4/, is square integrable with respect to invari-
ant measure on G/H , and hence ^ generates a unitary irreducible

G Arepresentation •n of G , whose Harish-Chandra module is T .
This was proved under stronger assumptions on X in [3 ] , and sub-
sequently proved in general by T . Oshima (unpublished, cf.

however [ 1 0 ] and [ 1 3 ] ) .

3. Lowest K-types. Let L = G , then L is connected and has Lie
algebra i . Put n - £ 9°! and n - I g°

' a€A\a|^0 (r 2 a€A ,a|-t=0 (r

and observe that t^ + n is a 9-stable parabolic subalgebra of
g^ . Choose an Iwasawa decomposition ^ = £ n f e ® a ® n « such that

a. n p c A and n~ c Up . Notice that a is T-stable, and
a. n q = a. n p by maximality of a in q so that a = a n p + a n h .
Define pp € a* by pp = ^ Tr ad , then it follows easily that•c <. Ho o* T *
P o l r» = Pi n • Define for each X € a.^ an element v, € a^ byZ' t tn^ >^0^ (r \ 0:

(5 ) ^SanQ = "\o^ and ^lanh = ^'an^ •

Theorem 1 . Assume A € A and

(6 ) < ( ^ P ) ! . , a | . >_ 0 for all a € ^ .

r^zen u^ ie o lowest K-type o/ T , and T /ias no other lowest

K-ti/pcs.

Proof: Let V, denote the spherical representation of L (the
———— A L *
analytic subgroup with Lie algebra i} with parameter \^ € a^ ,

and denote by V\ the representation of L which extends V, with
u. -2p(n.np) ^

the character e on exp it (then V^ is well de-
fined, cf. [ 8 ] Lemma 5.5 and the succeeding remark).

Let \(i^^n., V , , uj be the (g,K)-module induced from V,
(L. I A A A

in the sense of [ 1 1 ] , then one can conclude by comparing actions of
U(g) on u^ that the module T v, contragradient to T , is equiv-

\alent to X(^-«'n., V , , u ^ ) , (c f . [ 8 ] Lemma 5.6 where T has been
interchanged with T v).
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