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Olivier Guédon
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INTERACTIONS BETWEEN
COMPRESSED SENSING

RANDOM MATRICES AND
HIGH DIMENSIONAL GEOMETRY

Djalil Chafaï, Olivier Guédon, Guillaume Lecué,
Alain Pajor

Abstract. — This book is based on a series of post-doctoral level lectures given
at Université Paris-Est Marne-la-Vallée in November 2009, by Djalil Chafaï,
Olivier Guédon, Guillaume Lecué, Shahar Mendelson, and Alain Pajor. It aims
to bridge several actively developed domains of research around high dimen-
sional phenomena and asymptotic geometric analysis. The covered topics in-
clude empirical methods and high dimensional geometry, concentration of mea-
sure, compressed sensing, Gelfand widths, chaining methods, singular values,
Wishart matrices, and problems of selection of characters. This book focuses
on methods and concepts. Chapters are mostly self-contained. An index is
provided.

Résumé (Interactions entre échantillonnage comprimé, matrices aléatoires, et
géométrie de grande dimension)

Ce livre est basé sur une série de cours de niveau post-doctoral donnés à
l’Université Paris-Est Marne-la-Vallée en novembre 2009, par Djalil Chafaï ,
Olivier Guédon, Guillaume Lecué, Shahar Mendelson et Alain Pajor. Ce livre
tente de faire le lien entre plusieurs domaines de recherche activement dévelop-
pés autour des phénomènes en grandes dimensions et de l’analyse géométrique
asymptotique. Les thèmes abordés comprennent les méthodes empiriques en
géométrie de grande dimension, la concentration de la mesure, l’échantillon-
nage comprimé, les épaisseurs de Gelfand, les méthodes de chaînage, les valeurs
singulières, les matrices de Wishart et les problèmes de sélection de caractères.
Ce livre met l’accent sur lesméthodes et les concepts. Les chapitres sont auto-
nomes. Un index est fourni.
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INTRODUCTION

Compressed sensing, also referred to in the literature as compressive sensing
or compressive sampling, is a framework that enables one to recover approxi-
mate or exact reconstruction of sparse signals from incomplete measurements.
The existence of efficient algorithms for this reconstruction, such as the ℓ1-
minimization algorithm, and the potential for applications in signal processing
and imaging, led to a rapid and extensive development of the theory after the
seminal articles by D. Donoho [26], E. Candes, J. Romberg and T. Tao [15]
and E. Candes and T. Tao [17].

The principles underlying the discoveries of these phenomena in high dimen-
sions are related to more general problems and their solutions in Approxima-
tion Theory. One significant example of such a relation is the study of Gelfand
and Kolmogorov widths of classical Banach spaces. There is already a huge
literature on both the theoretical and numerical aspects of compressed sensing.
Our aim is not to survey the state of the art in this rapidly developing field,
but to highlight and study its interactions with other fields of mathematics, in
particular with asymptotic geometric analysis, random matrices and empirical
processes.

To introduce the subject, let T be a subset of RN and let A be an n×N
real matrix with rows Y1, . . . , Yn ∈ RN . Consider the general problem of re-
constructing a vector x ∈ T from the data Ax ∈ Rn: that is, from the known
measurements

⟨Y1, x⟩, . . . , ⟨Yn, x⟩
of an unknown x. Classical linear algebra suggests that the number n of mea-
surements should be at least as large as the dimension N in order to ensure
reconstruction. Compressed sensing provides a way of reconstructing the orig-
inal signal x from its compression Ax that uses only a small number of linear
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measurements: that is with n ≪ N . Clearly one needs some a priori hypoth-
esis on the subset T of signals that we want to reconstruct, and of course the
matrix A should be suitably chosen in order to allow the reconstruction of
every vector of T .

The first point concerns the subset T and is a matter of complexity. Many
tools within this framework were developed in Approximation Theory and in
the Geometry of Banach Spaces. One of our goals is to present these tools.

The second point concerns the design of the measurement matrix A. To date
the only good matrices are random sampling matrices and the key is to sample
Y1, . . . , Yn ∈ RN in a suitable way. For this reason probability theory plays a
central role in our exposition. These random sampling matrices will usually be
of Gaussian or Bernoulli (±1) type or be random sub-matrices of the discrete
Fourier N × N matrix (partial Fourier matrices). There is a huge technical
difference between the study of unstructured compressive matrices (with i.i.d
entries) and structured matrices such as partial Fourier matrices. Another
goal of this work is to describe the main tools from probability theory that are
needed within this framework. These tools range from classical probabilistic
inequalities and concentration of measure to the study of empirical processes
and random matrix theory.

The purpose of Chapter 1 is to present some basic tools and preliminary
background. We will look briefly at elementary properties of Orlicz spaces in
relation to tail inequalities for random variables. An important connection be-
tween high dimensional geometry and the study of empirical processes comes
from the behavior of the sum of independent centered random variables with
sub-exponential tails. An important step in the study of empirical processes
is discretization: in which we replace an infinite space by an approximating
net. It is essential to estimate the size of the discrete net and such estimates
depend upon the study of covering numbers. Several upper estimates for cov-
ering numbers, such as Sudakov’s inequality, are presented in the last part
of Chapter 1.

Chapter 2 is devoted to compressed sensing. The purpose is to provide some
of the key mathematical insights underlying this new sampling method. We
present first the exact reconstruction problem informally introduced above.
The a priori hypothesis on the subset of signals T that we investigate is
sparsity. A vector in RN is said to be m-sparse (m ! N) if it has at most
m non-zero coordinates. An important feature of this subset is its peculiar
structure: its intersection with the Euclidean unit sphere is a union of unit
spheres supported on m-dimensional coordinate subspaces. This set is highly
compact when the degree of compactness is measured in terms of covering
numbers. As long as m ≪ N the sparse vectors form a very small subset of
the sphere.

PANORAMAS & SYNTHÈSES 37



INTRODUCTION 9

A fundamental feature of compressive sensing is that practical reconstruc-
tion can be performed by using efficient algorithms such as the ℓ1-minimization
method which consists, for given data y = Ax, to solve the “linear program”

min
t∈RN

N∑

i=1

|ti| subject to At = y.

At this step, the problem becomes that of finding matrices for which the al-
gorithm reconstructs any m-sparse vector with m relatively large. A study of
the cone of constraints that ensures that every m-sparse vector can be recon-
structed by the ℓ1-minimization method leads to a necessary and sufficient
condition known as the null space property of order m:

∀h ∈ kerA, h ̸= 0, ∀I ⊂ [N ], |I| ≤ m,
∑

i∈I
|hi| <

∑

i∈Ic
|hi|.

This property has a nice geometric interpretation in terms of the structure of
faces of polytopes called neighborliness. Indeed, if P is the polytope obtained
by taking the symmetric convex hull of the columns of A, the null space prop-
erty of order m for A is equivalent to the neighborliness property of order m
for P : that the matrix A which maps the vertices of the cross-polytope

BN
1 =

{
t ∈ RN :

N∑

i=1

|ti| ≤ 1
}

onto the vertices of P preserves the structure of k-dimensional faces up to the
dimension k = m. This remarkable connection between compressed sensing
and high dimensional geometry is due to D. Donoho [25].

Unfortunately, the null space property is not easy to verify nor is the neigh-
borliness. An ingenious sufficient condition is the so-called Restricted Isometry
Property (RIP) of order m that requires that all sub-matrices of size n × m
of the matrix A are uniformly well-conditioned. More precisely, we say that A
satisfies the RIP of order p ! N with parameter δ = δp if the inequalities

1− δp ! |Ax|22 ! 1 + δp

hold for all p-sparse unit vectors x ∈ RN . An important feature of this concept
is that if A satisfies the RIP of order 2m with a parameter δ small enough, then
every m-sparse vector can be reconstructed by the ℓ1-minimization method.
Even if this RIP condition is difficult to check on a given matrix, it actually
holds true with high probability for certain models of random matrices and
can be easily checked for some of them.

Here probabilistic methods come into play. Among good unstructured sam-
pling matrices we shall study the case of Gaussian and Bernoulli randommatri-
ces. The case of partial Fourier matrices, which is more delicate, will be studied

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012



10 INTRODUCTION

in Chapter 5. Checking the RIP for the first two models may be treated with
a simple scheme: the ε-net argument presented in Chapter 2.

Another way to tackle the problem of reconstruction by ℓ1-minimization
is to analyse the Euclidean diameter of the intersection of the cross-polytope
BN

1 with the kernel of A. This study leads to the notion of Gelfand widths,
particularly for the cross-polytope BN

1 . Its Gelfand widths are defined by the
numbers

dn(BN
1 , ℓN2 ) = inf

codimS!n
rad (S ∩BN

1 ), n = 1, . . . , N,

where rad (S ∩BN
1 ) = max{|x|2 : x ∈ S ∩BN

1 } denotes the half Euclidean di-
ameter of the section of BN

1 and the infimum is over all subspaces S of RN of
dimension less than or equal to n.

A great deal of work was done in this direction in the seventies. These
Approximation Theory and Asymptotic Geometric Analysis standpoints shed
light on a new aspect of the problem and are based on a celebrated result of
B. Kashin [65] stating that

dn(BN
1 , ℓN2 ) !

C√
n
logO(1)

(N
n

)

for some numerical constant C. The relevance of this result to compressed
sensing is highlighted by the following fact.

Let 1 ≤ m ≤ n, if rad (kerA ∩ BN
1 ) < 1

2
√
m

then every m-sparse vector

can be reconstructed by ℓ1-minimization.

From this perspective, the goal is to estimate the diameter rad (kerA∩BN
1 )

from above. We discussed this in detail for several models of random matrices.
The connection with the RIP is clarified by the following result.

Assume that A satisfies the RIP of order p with parameter δ. Then

rad (kerA ∩BN
1 ) ≤ C

√
p
· 1

1− δ

where C is a numerical constant and so rad (kerA ∩ BN
1 ) < 1

2
√
m

is

satisfied with m = O(p).

The ℓ1-minimization method extends to the study of approximate recon-
struction of vectors which are not too far from being sparse. Let x ∈ RN and
let x♯ be a minimizer of

min
t∈RN

N∑

i=1

|ti| subject to At = Ax.

Again the notion of width is very useful. We prove the following:

PANORAMAS & SYNTHÈSES 37



INTRODUCTION 11

Assume that rad (kerA ∩ BN
1 ) < 1

4
√
m
. Then for any I ⊂ [N ] such that

|I| ! m and any x ∈ RN , we have

|x− x♯|2 ≤
1√
m

∑

i/∈I

|xi|.

This applies in particular to unit vectors of the space ℓNp,∞, 0 < p < 1 for

which min|I|!m
∑

i/∈I |xi| = O(m1−1/p).

In the last section of Chapter 2 we introduce a measure ℓ∗(T ) of complexity
of a subset T ⊂ RN defined by

ℓ∗(T ) = E sup
t∈T

N∑

i=1

giti,

where g1, . . . , gN are independent N (0, 1) Gaussian random variables. This
kind of parameter plays an important role in the theory of empirical processes
and in the geometry of Banach spaces (see [87], [96] and [119]). It allows to
control the size of rad (kerA ∩ T ) which as we have seen is a crucial issue in
approximate reconstruction.

This line of investigation goes deeper in Chapter 3 where we first present
classical results from the theory of Gaussian processes. To make the link with
compressed sensing, observe that if A is a n × N matrix with row vectors
Y1, . . . , Yn, then the RIP of order p with parameter δp can be rewritten in
terms of an empirical process property since

δp = sup
x∈S2(Σp)

∣∣∣
1

n

n∑

i=1

⟨Yi, x⟩2 − 1
∣∣∣

where S2(Σp) is the set of norm one p-sparse vectors of RN . While Chapter 2
makes use of a simple ε-net argument to study such processes, we present in
Chapter 3 the chaining and generic chaining techniques based on measures of
metric complexity such as the γ2 functional. The γ2 functional is equivalent
to the parameter ℓ∗(T ) in consequence of the majorizing measure theorem of
M. Talagrand [119]. This technique enables to provide a criterion that im-
plies the RIP for unstructured models of random matrices, which include the
Bernoulli and Gaussian models.

It is worth noticing that the ε-net argument, the chaining argument and the
generic chaining argument all share two ideas: the classical trade-off between
complexity and concentration on the one hand and an approximation principle
on the other. For instance, consider a Gaussian matrix

A =
1√
n
(gij)1!i!n,1!j!N

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012



12 INTRODUCTION

where the gij ’s are i.i.d. standard Gaussian variables. Let T be a subset of the
unit sphere SN−1 of RN . A classical problem is to understand how A acts on T .
In particular, does A preserve the Euclidean norm on T ? In the Compressed
Sensing setup, the “input” dimension N is much larger than the number of
measurements n, because A is used as a compression matrix. So clearly A
cannot preserve the Euclidean norm on the whole sphere SN−1. Hence, it is
natural to identify the subsets T of SN−1 for which A acts on T in a norm
preserving way. Let’s start with a single point x ∈ T . Then for any ε ∈ (0, 1),
with probability greater than 1− 2 exp(−c0nε2), one has

1− ε ! |Ax|22 ! 1 + ε.

This result is the one expected since E|Ax|22 = |x|22 (we say that the standard
Gaussian measure is isotropic) and the Gaussian measure on RN has strong
concentration properties. Thus proving that A acts in a norm preserving way
on a single vector is only a matter of isotropicity and concentration. Now we
want to see how many points in T may share this property simultaneously.
This is where the trade-off between complexity and concentration is at stake.
A simple union bound argument tells us that if Λ ⊂ T has a cardinality less
than exp(12c0nε

2), then, with probability greater than 1 − 2 exp(−1
2c0nε

2),
one has

∀x ∈ Λ, 1− ε ! |Ax|22 ! 1 + ε.

This means that A preserves the norm of all the vectors of Λ at the same
time, as long as |Λ| ! exp(12c0nε

2). If the entries in A had different con-
centration properties, we would have ended up with a different cardinality
for |Λ|. As a consequence, it is possible to control the norm of the images
by A of exp(12c0nε

2) points in T simultaneously. The first way of choos-
ing Λ that may come to mind is to use an ε-net of T with respect to ℓN2
and then to ask if the norm preserving property of A on Λ extends to T ?
Indeed, if m ≤ C(ε)n log−1

(
N/n), there exists an ε-net Λ of size exp(12c0nε

2)
in S2(Σm) for the Euclidean metric. And, by what is now called the ε-net
argument, we can describe all the points in S2(Σm) using only the points in Λ:

Λ ⊂ S2(Σm) ⊂ (1− ε)−1conv(Λ).

This allows to extend the norm preserving property of A on Λ to the entire
set S2(Σm) and was the scheme used in Chapter 2.

But this scheme does not apply to several important sets T in SN−1. That
is why we present the chaining and generic chaining methods in Chapter 3.
Unlike the ε-net argument which demanded only to know how A acts on a
single ε-net of T , these two methods require to study the action of A on a
sequence (Ts) of subsets of T with exponentially increasing cardinality. In the
case of the chaining argument, Ts can be chosen as an εs-net of T where εs
is chosen so that |Ts| = 2s and for the generic chaining argument, the choice

PANORAMAS & SYNTHÈSES 37



INTRODUCTION 13

of (Ts) is recursive: for large values of s, the set Ts is a maximal separated set
in T of cardinality 22

s
and for small values of s, the construction of Ts depends

on the sequence (Tr)r"s+1. For these methods, the approximation argument
follows from the fact that dℓN2 (t, Ts) tends to zero when s tends to infinity
for any t ∈ T and the trade-off between complexity and concentration is used
at every stage s of the approximation of T by Ts. The metric complexity
parameter coming from the chaining method is called the Dudley entropy
integral ∫ ∞

0

√
logN(T, d, ε)dε

while the one given by the generic chaining mechanism is the γ2 functional

γ2(T, ℓ
N
2 ) = inf

(Ts)s
sup
t∈T

∞∑

s=0

2
1
2
sdℓN2 (t, Ts)

where the infimum is taken over all sequences (Ts) of subsets of T such that
|T0| ! 1 and |Ts| ! 22

s
for every s " 1. In Chapter 3, we prove that A acts in

a norm preserving way on T with probability exponentially in n close to 1 as
long as

γ2(T, ℓ
N
2 ) = O(

√
n ).

In the case T = S2(Σm) treated in Compressed Sensing, this condition implies
that m = O

(
n log−1

(
N/n

))
which is the same as the condition obtained using

the ε-net argument in Chapter 2. So, as far as norm preserving properties
of random operators are concerned, the results of Chapter 3 generalize those
of Chapter 2. Nevertheless, the norm preserving property of A on a set T
implies an exact reconstruction property of A of all m-sparse vectors by the ℓ1-
minimization method only when T = S2(Σm). In this case, the norm preserving
property is the RIP of order m.

On the other hand, the RIP constitutes a control on the largest and small-
est singular values of all sub-matrices of a certain size. Understanding the
singular values of matrices is precisely the subject of Chapter 4. An m × n
matrix A with m ! n maps the unit sphere to an ellipsoid, and the half
lengths of the principle axes of this ellipsoid are precisely the singular val-
ues s1(A) " · · · " sm(A) of A. In particular,

s1(A) = max
|x|2=1

|Ax|2 = ∥A∥2→2 and sn(A) = min
|x|2=1

|Ax|2.

Geometrically, A is seen as a correspondence-dilation between two orthonormal
bases. In matrix form UAV ∗ = diag(s1(A), . . . , sm(A)) for a pair of unitary
matrices U and V of respective sizes m × m and n × n. This singular value
decomposition – SVD for short – has tremendous importance in numerical
analysis. One can read off from the singular values the rank and the norm
of the inverse of the matrix: the singular values are the eigenvalues of the
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14 INTRODUCTION

Hermitian matrix
√
AA∗: and the largest and smallest singular values appear

in the definition of the condition number s1/sm which allows to control the
behavior of linear systems under perturbations of small norm.

The first part of Chapter 4 is a compendium of results on the singular values
of deterministic matrices, including the most useful perturbation inequalities.
The Gram-Schmidt algorithm applied to the rows and the columns of A al-
lows to construct a bidiagonal matrix which is unitarily equivalent to A. This
structural fact is at the heart of most numerical algorithms for the actual
computation of singular values.

The second part of Chapter 4 deals with random matrices with i.i.d. entries
and their singular values. The aim is to offer a cultural tour in this vast and
growing subject. The tour begins with Gaussian random matrices with i.i.d.
entries forming the Ginibre Ensemble. The probability density of this Ensemble
is proportional to G .→ exp(−Tr(GG∗)). The matrix W = GG∗ follows a
Wishart law, a sort of multivariate χ2. The unitary bidiagonalization allows to
compute the density of the singular values of these Gaussian random matrices,
which turns out to be proportional to a function of the form

s .−→
∏

k

sαk e
−s2k

∏

i≠j

|s2i − s2j |β.

The change of variable sk .→ s2k reveals Laguerre weights in front of the Van-
dermonde determinant, the starting point of a story involving orthogonal poly-
nomials. As for most random matrix ensembles, the determinant measures a
logarithmic repulsion between eigenvalues. Here it comes from the Jacobian of
the SVD. Such Gaussian models can be analysed with explicit but cumbersome
computations. Many large dimensional aspects of random matrices depend
only on the first two moments of the entries, and this makes the Gaussian case
universal. The most well known universal asymptotic result is indubitably the
Marchenko-Pastur theorem. More precisely if M is an m× n random matrix

with i.i.d. entries of variance n− 1
2 , the empirical counting probability measure

of the singular values of M

1

m

m∑

k=1

δsk(M)

tends weakly, when n,m → ∞ with m/n → ρ ∈ (0, 1], to the Marchenko-
Pastur law

1

ρπx

√
((x+ 1)2 − ρ)(ρ− (x− 1)2) 1[1−√

ρ,1+
√
ρ ](x)dx.

We provide a proof of the Marchenko-Pastur theorem by using the methods of
moments. When the entries of M have zero mean and finite fourth moment,
Bai-Yin theorem furnishes the convergence at the edge of the support, in the
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