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Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We consider an unbounded lattice spin system with a Gibbs measure.
We introduce the Hodge-Kodaira operator acting on differential forms and give a
sufficient condition for the positivity of the lowest eigenvalue.

Résumé (Laplacien de Witten sur un système de spin sur réseau). — Nous considérons un
réseau de spin muni d’une mesure de Gibbs. Nous introduisons l’opérateur de Hodge-
Kodaira agissant sur les formes différentielles, et nous donnons une condition suffi-
sante pour la positivité de la plus petite valeur propre.

1. Introduction

In this paper, we consider the spectral gap problem for a lattice spin system. Here,
in our case, the single spin space is R and so it is non-compact. This is sometimes
called an unbounded spin system.

We consider a model that each spin sits on the lattice Zd, and so the configuration
space is RZd . We suppose that a Gibbs measure is given in RZd , which has the following
formal expression:

(1.1) ν = Z−1 exp

ß
−2J

∑
i,j∈Zd
i∼j

(xi − xj)2 − 2
∑
i∈Zd

U(xi)

™ ∏
i∈Zd

dxi.

Here U is a function of R, called a self potential and i ∼ j means that ‖i − j‖1 =∑
k |ik − jk| = 1. Under this measure we define the Hodge-Kodaira operator and

discuss the positivity of the lowest eigenvalue of the operator. For unbounded spin
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systems, the Poincaré inequality, the logarithmic Sobolev inequality and other prop-
erties are well discussed, e.g., Zegarlinski [11], Yoshida [10], etc. In particular, Helffer
[5, 6, 7, 8] dealt with this problem in connection to the Witten Laplacian. In fact, he
proved the positivity of the lowest eigenvalue of the Hodge-Kodaira operator acting
on 1-forms. From this point of view, we generalize his result to any p-forms (p ≥ 1),
i.e., we will prove that the lowest eigenvalue of the Hodge-Kodaira operator acting on
p-forms is positive.

The organization of the paper is as follows. In Section 2, we discuss the Witten
Laplacian on a finite dimensional space and in Section 3, we summarize differential
forms, the Hodge-Kodaira operator and the Weitzenböck formula, which is crucial in
the later argument. In Section 4, we give an estimate of spectral gap for 1-dimensional
case. Last in Section 5, we prove the positivity of the lowest eigenvalue of the Hodge-
Kodaira operator. We only consider the finite region case but we give a uniform
estimate. In fact, it is independent of the choice of region and the boundary condition.
So the result is valid for the infinite volume case as well.

2. Witten Laplacian in finite dimension

We give a quick review of the Witten Laplacian, which we need later. Details
and related topics can be found in Hellfer [8], Albeverio-Daletskii-Kondratiev [1],
Elworthy-Rosenberg [4], etc. Simon et al [3] is also a good reference for the super-
symmetry.

Our interest is in the infinite dimensional case, but we start with the finite dimen-
sional case. Suppose we are given a C2 function Φ on RN and define a measure ν
by

(2.1) ν(dx) = Z−1e−2Φdx.

Here Z =
∫

RN e
−2Φdx so that ν is a probability measure. Define a Dirichlet form E

by

(2.2) E (f, g) =

∫
RN

(∇f,∇g)e−2Φdx,

where ∇ = (∂1, . . . , ∂N ), ∂k = d
dxk

. (∇f,∇g) stands for the Euclidean inner product.
We must specify the domain of E . (2.2) is well-defined for f , g ∈ C∞0 (RN ). So at first,
E is defined on C∞0 (RN ). Let us give an explicit form of the dual operator ∂∗j of ∂j
in L2(ν). To do this, note that∫

RN
∂jfge

−2Φdx = −
∫

RN
f∂j(ge

−2Φ)dx = −
∫

RN
f(∂jg − 2∂jΦg)e−2Φdx,

which means

(2.3) ∂∗j = −∂j + 2∂jΦ.
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Here ∂∗j is the dual operator of ∂j in L2(ν).
From this, we can see that the dual operator of ∇ has dense domain and so ∇ is

closable. Moreover the generator A is given by

(2.4) Af = −
∑
j

∂∗j ∂j =
∑
j

(∂2
j f − 2∂jΦ∂jf) = 4f − 2(∇Φ,∇f).

This is valid for f ∈ C∞0 (RN ). We can show that A is essentially self-adjoint and so,
by taking closure, we may regard A as self-adjoint operator. The domain of E is a set
of all functions f ∈ L2(ν) with ∇f ∈ L2(ν; RN ).

We now define a Witten Laplacian. Let I : L2(dx) −→ L2(ν) be a unitary operator
defined by

(2.5) If(x) = eΦf.

Let us obtain a operator Xj which satisfies the following commutative diagram:

(2.6)

L2(dx)
I−−−−→ L2(ν)

Xj

y y∂j
L2(dx)

I−−−−→ L2(ν)

It is not hard to see that

Xj = e−Φ∂je
Φ = ∂j + ∂jΦ.

We denote the dual operator of Xj in L2(dx) by X̃j . Here we use the following
convention. ∗ stands for the dual operator in L2(ν) and ˜ stands for the dual operator
in L2(dx), dx being the Lebesgue measure in RN . X̃j has the following form:

X̃j = −∂j + ∂jΦ.

This is also equal to e−Φ∂∗j e
Φ. The operator A associated with the generator A =

−
∑
j ∂
∗
j ∂j is computed by

A = e−ΦAeΦ = −e−Φ(
∑
j

∂∗j ∂j)e
Φ = −

∑
j

X̃jXj

= −
∑
j

(−∂j + ∂jΦ)(∂j + ∂jΦ) =
∑
j

(∂2
j + ∂2

jΦ− (∂jΦ)2)

= 4+4Φ− |∇Φ|2.

Definition 2.1. — A = 4+4Φ− |∇Φ|2 in L2(dx) is called a Witten Laplacian.

A and A are unitarily equivalent to each other but we distinguish them and call A
as the Witten Laplacian, which is an operator in L2(dx).

The following commutation relation is easily checked.
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Proposition 2.1. — In L2(ν), we have

[∂i, ∂j ] = 0,(2.7)

[∂i, ∂
∗
j ] = 2∂i∂jΦ,(2.8)

[∂∗j , ∂
∗
k ] = 0.(2.9)

Further, in L2(dx), we have

[Xi, Xj ] = 0,(2.10)

[Xi, X̃j ] = 2∂i∂jΦ,(2.11)

[X̃j , X̃j ] = 0.(2.12)

3. Witten Laplacian acting on differential forms

In Section 2, we have introduced the Witten Laplacian. We now proceed to the
Witten Laplacian acting on differential forms.

Let us quickly review the exterior algebra. In the sequel, we will deal with multi-
linear functionals on RN . Let t be a p-linear functional and s be a q-linear functional,
e.g., t is a functional from RN × · · · × RN︸ ︷︷ ︸

p

into R which is linear in each coordinate.

We define p+ q-linear functional t⊗ s by

(3.1) t⊗ s(v1, . . . , vp, vp+1, . . . , vp+q) = t(v1, . . . , vp)s(vp+1, . . . , vp+q).

t⊗ s is called a tensor product. We also define the alternation mapping Ap by

(3.2) Apt(v1, . . . , vp) =
1

p!

∑
σ∈Sp

(sgnσ) t(vσ(1), . . . , vσ(p))

for p-linear functional t. Here Sp is the symmetric group of degree p and sgnσ stands
for the signature. If p-linear functional θ satisfies Apθ = θ, θ is called alternating. We
denote the set of all alternating functionals of degree p by

∧p(RN )∗. For θ ∈
∧p(RN )∗

and η ∈
∧q(RN )∗, we define their exterior product θ ∧ η by

(3.3) θ ∧ η =
(p+ q)!

p!q!
Ap+q(θ ⊗ η).

Taking an orthonormal basis θ1, . . . , θN in (RN )∗, any element of
∧p(RN )∗ is repre-

sented as a unique linear combination of the following elements

(3.4) θi1 ∧ · · · ∧ θip .

We define an inner product in
∧p(RN )∗ so that all elements of the form (3.4) become

an orthonormal basis in
∧p(RN )∗.

Ap(RN ) = RN×
∧p(RN )∗ has a structure of vector bundle and a section of Ap(RN )

is called a differential form of degree p. The set of all sections is denoted by Γ(Ap(RN )).
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Since the vector bundle Ap(RN ) is trivial, any section can be identified with a mapping
from RN into

∧p(RN )∗. In the sequel, we use this convention. Γ∞(Ap(RN )) denotes
the set of all smooth differential forms and Γ∞0 (Ap(RN )) denotes the set of all smooth
differential forms with compact support.

We introduce some operators in
∧p(RN )∗ as follows. For θ ∈ (RN )∗, we define

ext(θ) :
∧p(RN )∗ −→

∧p+1(RN )∗ by

(3.5) ext(θ)ω = θ ∧ ω

and for v ∈ RN , we define int(θ) :
∧p(RN )∗ −→

∧p−1(RN )∗ by

(3.6) (int(v)ω)(v1, . . . , vp−1) = ω(v, v1, . . . , vp−1).

Taking a standard basis {e1, . . . , eN} of RN and its dual basis {θ1, . . . , θN}, we define
operators ai, (ai)∗ by

ai = int(ei),(3.7)

(ai)∗ = ext(θi).(3.8)

Here we regard ai, (ai)∗ as operators on an exterior algebra R⊕ (RN )∗ ⊕
∧2(RN )∗ ⊕

· · · ⊕
∧N (RN )∗. They satisfy the following commutation relation:

[ai, aj ]+ = 0,(3.9)

[ai, (aj)∗]+ = δij ,(3.10)

[(ai)∗, (aj)∗]+ = 0.(3.11)

Here [ , ]+ stands for an anti-commutator, i.e., [ai, aj ]+ = aiaj + ajai.
For differential forms, the covariant differentiation ∇ can be defined. More gener-

ally, the covariant differentiation ∇ is defined for tensor fields as follows:

∇t =
∑
i

θi ⊗ ∂it.

Here we remark that the operator is considered in L2(ν), i.e., the reference measure
is ν. The dual operator of ∇ in L2(ν) is given by

∇∗(
∑
i

θi ⊗ ti) =
∑
i

∂∗i ti

and so we have

∇∗∇t =
∑
i

∂∗i ∂it = −
∑
i

(∂2
i − 2∂iΦ∂i)t.

For differential forms, we can define the exterior differentiation as follows. Let ω
be a differential form of degree p. Then its exterior derivative is defined by dω =

(p+ 1)Ap+1∇ω and it is written as

(3.12) d =
∑
i

ext(θi)∂i =
∑
i

(ai)∗∂i.
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