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Abstract. — For any manifold M , the direct sum TM = TM ⊕T ∗M carries a natural
inner product given by the pairing of vectors and covectors. Differential forms on M
may be viewed as spinors for the corresponding Clifford bundle, and in particular there
is a notion of pure spinor. In this paper, we study pure spinors and Dirac structures
in the case when M = G is a Lie group with a bi-invariant pseudo-Riemannian
metric, e.g. G semi-simple. The applications of our theory include the construction
of distinguished volume forms on conjugacy classes in G, and a new approach to the
theory of quasi-Hamiltonian G-spaces.

Résumé (Spineurs purs sur les groupes de Lie). — Pour toute variété lisseM , le fibré TM =
TM⊕T ∗M est muni d’un produit scalaire naturel défini par la dualité entre vecteurs
et co-vecteurs. Les formes différentielles sur M sont des spineurs pour le fibré de
Clifford correspondant. On définit alors les spineurs purs. Dans cet article, nous
étudions les spineurs purs et les structures de Dirac dans le cas où M est un groupe
de Lie G muni d’une métrique pseudo-riemannienne bi-invariante, par exemple un
groupe semi-simple. Comme applications de notre théorie, nous définissons une forme
volume distinguée sur les classes de conjugaison de G, et nous proposons une nouvelle
approche de la théorie des G-espaces quasi-hamiltoniens.

0. Introduction

For any manifold M , the direct sum TM = TM ⊕ T ∗M carries a non-degenerate
symmetric bilinear form, extending the pairing between vectors and covectors. There
is a natural Clifford action % of the sections Γ(TM) on the space Ω(M) = Γ(∧T ∗M)

of differential forms, where vector fields act by contraction and 1-forms by exterior
multiplication. That is, ∧T ∗M is viewed as a spinor module over the Clifford bundle
Cl(TM). A form φ ∈ Ω(M) is called a pure spinor if the solutions w ∈ Γ(TM) of

2010 Mathematics Subject Classification. — 53D17, 53D20, 15A66.
Key words and phrases. — Dirac structures, Courant algebroids, Clifford algebras, pure spinors, moment
maps.

© Astérisque 327, SMF 2009



132 A. ALEKSEEV, H. BURSZTYN & E. MEINRENKEN

%(w)φ = 0 span a Lagrangian subbundle E ⊂ TM . Given a closed 3-form η ∈ Ω3(M),
a pure spinor φ is called integrable (relative to η) [9, 28] if there exists a section
w ∈ Γ(TM) with

(d + η)φ = %(w)φ.

In this case, there is a generalized foliation of M with tangent distribution the pro-
jection of E to TM . The subbundle E defines a Dirac structure [20, 50] on M , and
the triple (M,E, η) is called a Dirac manifold.

The present paper is devoted to the study of Dirac structures and pure spinors on
Lie groups G. We assume that the Lie algebra g carries a non-degenerate invariant
symmetric bilinear form B, and take η ∈ Ω3(G) as the corresponding Cartan 3-form.
Let g denote the Lie algebra g with the opposite bilinear form −B. We will describe
a trivialization

TG ∼= G× (g⊕ g),
under which any Lagrangian Lie subalgebra s ⊂ g⊕ g defines a Dirac structure on G.
There is also a similar identification of spinor bundles

R : G× Cl(g)
∼=−→ ∧T ∗G,

taking the standard Clifford action of g ⊕ g on Cl(g), where the first summand acts
by left (Clifford) multiplication and the second summand by right multiplication, to
the Clifford action %. This isomorphism takes the Clifford differential dCl on Cl(g),
given as Clifford commutator by a cubic element [4, 38], to the the differential d + η

on Ω(G). As a result, pure spinors x ∈ Cl(g) for the Clifford action of Cl(g ⊕ g) on
Cl(g) define pure spinors φ = R(x) ∈ Ω(G), and the integrability condition for φ
is equivalent to a similar condition for x. The simplest example x = 1 defines the
Cartan-Dirac structure EG [14, 50], introduced by Alekseev, Ševera and Strobl in
the 1990’s. In this case, the resulting foliation of G is just the foliation by conjugacy
classes. We will study this Dirac structure in detail, and examine in particular its
behavior under group multiplication and under the exponential map. When G is a
complex semi-simple Lie group, it carries another interesting Dirac structure, which
we call the Gauss-Dirac structure. The corresponding foliation of G has a dense open
leaf which is the ‘big cell’ from the Gauss decomposition of G.

The main application of our study of pure spinors is to the theory of q-Hamiltonian
actions [2, 3]. The original definition of a q-Hamiltonian G-space in [3] involves a G-
manifoldM together with an invariant 2-form ω and a G-equivariant map Φ: M → G

satisfying appropriate axioms. As observed in [14, 15], this definition is equivalent to
saying that the ‘G-valued moment map’ Φ is a suitable morphism of Dirac manifolds
(in analogy with classical moment maps, which are morphisms M → g∗ of Poisson
manifolds). In this paper, we will carry this observation further, and develop all the
basic results of q-Hamiltonian geometry from this perspective. A conceptual advan-
tage of this alternate viewpoint is that, while the arguments in [3] required G to be
compact, the Dirac geometry approach needs no such assumption, and in fact works
in the complex (holomorphic) category as well. This is relevant for applications: For
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instance, the symplectic form on a representation variety Hom(π1(Σ), G)/G (for Σ

a closed surface) can be obtained by q-Hamiltonian reduction, and there are many
interesting examples for noncompact G. (For instance, the case G = PSL(2,R) gives
the symplectic form on Teichmüller space.) Complex q-Hamiltonian spaces appear
e.g. in the work of Boalch [13] and Van den Bergh [11].

The organization of the paper is as follows. Sections 1 and 2 contain a review of
Dirac geometry, first on vector spaces and then on manifolds. The main new results
in these sections concern the geometry of Lagrangian splittings TM = E ⊕ F of
the bundle TM . If φ, ψ ∈ Ω(M) are pure spinors defining E,F , then, as shown
in [17, 19], the top degree part of φ> ∧ ψ (where > denotes the standard anti-
involution of the exterior algebra) is nonvanishing, and hence defines a volume form
µ on M . Furthermore, there is a bivector field π ∈ X2(M) naturally associated with
the splitting, which satisfies

φ> ∧ ψ = e−ι(π)µ.

We will discuss the properties of µ and π in detail, including their behavior under
Dirac morphisms.

In Section 3 we specialize to the caseM = G, where G carries a bi-invariant pseudo-
Riemannian metric, and our main results concern the isomorphism TG ∼= G× (g⊕ g)
and its properties. Under this identification, the Cartan-Dirac structure EG ⊂ TG
corresponds to the diagonal g∆ ⊂ g ⊕ g, and hence it has a natural Lagrangian
complement FG ⊂ TG defined by the anti-diagonal. We will show that the exponential
map gives rise to a Dirac morphism (g, Eg, 0) → (G,EG, η) (where Eg is the graph
of the linear Poisson structure on g ∼= g∗), but this morphism does not relate the
obvious complements Fg = Tg and FG. The discrepancy is given by a ‘twist’, which
is a solution of the classical dynamical Yang-Baxter equation. For G complex semi-
simple, we will construct another Lagrangian complement of EG, denoted by “FG,
which (unlike FG) is itself a Dirac structure. The bivector field corresponding to the
splitting EG ⊕ “FG is then a Poisson structure on G, which appeared earlier in the
work of Semenov-Tian-Shansky [49].

In Section 4, we construct an isomorphism ∧T ∗G ∼= G× Cl(g) of spinor modules,
valid under a mild topological assumption on G (which is automatic if G is simply
connected). This allows us to represent the Lagrangian subbundles EG, FG and “FG
by explicit pure spinors φG, ψG, and ψ̂G, and to derive the differential equations
controlling their integrability. We show in particular that the Cartan-Dirac spinor
satisfies

(d + η)φG = 0.

Section 5 investigates the foundational properties of q-Hamiltonian G-spaces from
the Dirac geometry perspective. Our results on the Cartan-Dirac structure give a di-
rect construction of the fusion product of q-Hamiltonian spaces. On the other hand, we
use the bilinear pairing of spinors to show that, for a q-Hamiltonian space (M,ω,Φ),
the top degree part of eωΦ∗ψG ∈ Ω(M) defines a volume form µM . This volume form
was discussed in [8] when G is compact, but the discussion here applies equally well
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to non-compact or complex Lie groups. Since conjugacy classes in G are examples of
q-Hamiltonian G-spaces, we conclude that for any simply connected Lie group G with
bi-invariant pseudo-Riemannian metric (e.g. G semi-simple), any conjugacy class in
G carries a distinguished invariant volume form. If G is complex semi-simple, one
obtains the same volume form µM if one replaces ψG with the Gauss-Dirac spinor
ψ̂G. However, the form eωΦ∗ψ̂G satisfies a nicer differential equation, which allows us
to compute the volume of M , and more generally the measure Φ∗|µM |, by Berline-
Vergne localization [12]. We also explain in this Section how to view the more general
q-Hamiltonian q-Poisson spaces [2] in our framework.

Lastly, in Section 6, we revisit the theory of K∗-valued moment maps in the sense
of Lu [42] and its connections with P -valued moment maps [3, Sec. 10] from the Dirac
geometric standpoint.
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Notation. — Our conventions for Lie group actions are as follows: Let G be a
Lie group (not necessarily connected), and g its Lie algebra. A G-action on a man-
ifold M is a group homomorphism A : G → Diff(M) for which the action map
G×M →M, (g,m) 7→ A(g)(m) is smooth. Similarly, a g-action onM is a Lie algebra
homomorphism A : g → X(M) for which the map g ×M → TM, (ξ,m) 7→ A(ξ)m
is smooth. Given a G-action A, one obtains a g-action by the formula A(ξ)(f) =
∂
∂t

∣∣
t=0

A(exp(−tξ))∗f , for f ∈ C∞(M) (here vector fields are viewed as derivations of
the algebra of smooth functions).

1. Linear Dirac geometry

The theory of Dirac manifolds was initiated by Courant and Weinstein in [20, 21].
We briefly review this theory, developing and expanding the approach via pure spinors
advocated by Gualtieri [28] (see also Hitchin [32] and Alekseev-Xu [9]). All vector
spaces in this section are over the ground field K = R or C. We begin with some
background material on Clifford algebras and spinors (see e.g. [19] or [47].)

1.1. Clifford algebras. — Suppose V is a vector space with a non-degenerate
symmetric bilinear form B. We will sometimes refer to such a bilinear form B as
an inner product on V . The Clifford algebra over V is the associative unital algebra
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generated by the elements of V , with relations

vv′ + v′v = B(v, v′) 1.

It carries a compatible Z2-grading and Z-filtration, such that the generators v ∈
V are odd and have filtration degree 1. We will denote by x 7→ x> the canonical
anti-automorphism of exterior and Clifford algebras, equal to the identity on V . For
any x ∈ Cl(V ), we denote by lCl(x), rCl(x) the operators of graded left and right
multiplication on Cl(V ):

lCl(x)x′ = xx′, rCl(x)x′ = (−1)|x||x
′|x′x.

Thus lCl(x)− rCl(x) is the operator of graded commutator [x, ·]Cl.
The quantization map q : ∧V → Cl(V ) is the isomorphism of vector spaces defined

by q(v1 ∧ · · · ∧ vr) = v1 · · · vr for pairwise orthogonal elements vi ∈ V . Let

str : Cl(V )→ det(V ) := ∧top(V )

be the super-trace, given by q−1, followed by taking the top degree part. It has the
property str([x, x′]Cl) = 0.

A Clifford module is a vector space S together with an algebra homomorphism
% : Cl(V ) → End(S). If S is a Clifford module, one has a dual Clifford module given
by the dual space S∗ with Clifford action %∗(x) = %(x>)∗.

Recall that Pin(V ) is the subgroup of Cl(V )× generated by all v ∈ V whose square
in the Clifford algebra is vv = ±1. It is a double cover of the orthogonal group O(V ),
where g ∈ Pin(V ) takes v ∈ V to (−1)|g|gvg−1, using Clifford multiplication. The
norm homomorphism for the Pin group is the group homomorphism

(1) N : Pin(V )→ {−1,+1}, N(g) = g>g = ±1.

Let {·, ·} be the graded Poisson bracket on ∧V , given on generators by {v1, v2} =

B(v1, v2). Then ∧2V is a Lie algebra under the Poisson bracket, isomorphic to o(V )

in such a way that ε ∈ ∧2V corresponds to the linear map v 7→ {ε, v}. The Lie algebra
pin(V ) ∼= o(V ) is realized as the Lie subalgebra q(∧2(V )) ⊂ Cl(V ).

A subspace E ⊂ V is called isotropic if E ⊂ E⊥ and Lagrangian if E = E⊥.
The set of Lagrangian subspaces is non-empty if and only if the bilinear form is split.
If K = C, this just means that dimV is even, while for K = R this requires that
the bilinear form has signature (n, n). From now on, we will reserve the letter W for
a vector space with split bilinear form 〈·, ·〉. We denote by Lag(W ) the Grassmann
manifold of Lagrangian subspaces ofW . It carries a transitive action of the orthogonal
group O(W ).

Remark 1.1. — Suppose K = R, and identify W ∼= R2n with the standard bilinear
form of signature (n, n). The group O(W ) ∼= O(n, n) has maximal compact subgroup
O(n)×O(n). Already the subgroup O(n)× {1} acts transitively on Lag(W ), and in
fact the action is free. It follows that Lag(W ) is diffeomorphic to O(n). Further details
may be found in [46].
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