MIRZAKHARNI'S RECURSION FORMULA IS EQUIVALENT TO THE WITTEN-KONTSEVICH THEOREM

by

Kefeng Liu \& Hao Xu

Dedicated to Jean-Michel Bismut on the occasion of his $60^{\text {th }}$ birthday

Abstract

In this paper, we give a proof of Mirzakhani's recursion formula of WeilPetersson volumes of moduli spaces of curves using the Witten-Kontsevich theorem. We also describe properties of intersections numbers involving higher degree κ classes.

Résumé (La formule de récurrence de Mirzakhani est équivalente au théorème de WittenKontsevich)

Dans cet article, nous démontrons la formule de récurrence de Mirzakhani sur les volumes de Weil-Petersson des espaces de module de courbes en utilisant le théorème de Witten-Kontsevich. Nous donnons aussi des propriétés des nombres d'intersection associées aux classes κ de degré supérieur.

1. Introduction

Following the notation of Mulase and Safnuk [21], let $\mathcal{M}_{g, n}(\mathbf{L})$ denote the moduli space of bordered Riemann surfaces with n geodesic boundary components of specified lengths $\mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)$ and let $\operatorname{Vol}_{g, n}(\mathbf{L})$ denote its Weil-Petersson volume $\operatorname{Vol}\left(\mathcal{M}_{g, n}(\mathbf{L})\right)$. Using her remarkable generalization of the McShane identity, Mirzakhani [19] proved a beautiful recursion formula for these Weil-Petersson volumes

$$
\begin{aligned}
& \operatorname{Vol}_{g, n}(\mathbf{L})=\frac{1}{2 L_{1}} \sum_{\substack{g_{1}+g_{2}=g \\
\underline{n}=I}} \int_{0}^{L_{1}} \int_{0}^{\infty} \int_{0}^{\infty} x y H(t, x+y) \\
& \quad \times \operatorname{Vol}_{g_{1}, n_{1}}\left(x, \mathbf{L}_{I}\right) \operatorname{Vol}_{g_{2}, n_{2}}\left(y, \mathbf{L}_{J}\right) d x d y d t \\
& +\frac{1}{2 L_{1}} \int_{0}^{L_{1}} \int_{0}^{\infty} \int_{0}^{\infty} x y H(t, x+y) \operatorname{Vol}_{g-1, n+1}\left(x, y, L_{2}, \ldots, L_{n}\right) d x d y d t
\end{aligned}
$$

2010 Mathematics Subject Classification. - 14H10, 14H81.

Key words and phrases. - Weil-Petersson volume, Mirzakhani recursion formula, Witten-Kontsevich theorem.

$$
\begin{aligned}
+\frac{1}{2 L_{1}} \sum_{j=2}^{n} \int_{0}^{L_{1}} \int_{0}^{\infty} x\left(H \left(x, L_{1}\right.\right. & \left.\left.+L_{j}\right)+H\left(x, L_{1}-L_{j}\right)\right) \\
& \times \operatorname{Vol}_{g, n-1}\left(x, L_{2}, \ldots, \hat{L}_{j}, \ldots, L_{n}\right) d x d t
\end{aligned}
$$

where the kernel function

$$
H(x, y)=\frac{1}{1+e^{(x+y) / 2}}+\frac{1}{1+e^{(x-y) / 2}}
$$

Using symplectic reduction, Mirzakhani [20] showed the following relation

$$
\begin{aligned}
\frac{\operatorname{Vol}_{g, n}(2 \pi \mathbf{L})}{\left(2 \pi^{2}\right)^{3 g+n-3}} & =\frac{1}{(3 g+n-3)!} \int_{\mathcal{M}_{g, n}}\left(\kappa_{1}+\sum_{i=1}^{n} L_{i}^{2} \psi_{i}\right)^{3 g+n-3} \\
& =\sum_{\substack{d_{0}+\cdots+d_{n} \\
=3 g+n-3}} \prod_{i=0}^{n} \frac{1}{d_{i}!}\left\langle\kappa_{1}^{d_{0}} \prod \tau_{d_{i}}\right\rangle_{g, n} \prod_{i=1}^{\infty} L_{i}^{2 d_{i}}
\end{aligned}
$$

Combining with her recursion formula of Weil-Petersson volumes, Mirzakhani [20] found a new proof of the celebrated Witten-Kontsevich theorem.

By taking derivatives with respect to $\mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)$ in Mirzakhani's recursion, Mulase and Safnuk [21] obtained the following enlightening recursion formula of intersection numbers which is equivalent to Mirzakhani's recursion.

$$
\begin{aligned}
&\left(2 d_{1}+1\right)!!\left\langle\prod_{j=1}^{n} \tau_{d_{j}} \kappa_{1}^{a}\right\rangle_{g} \\
&= \sum_{j=2}^{n} \sum_{b=0}^{a} \frac{a!}{(a-b)!} \frac{\left(2\left(b+d_{1}+d_{j}\right)-1\right)!!}{\left(2 d_{j}-1\right)!!} \beta_{b}\left\langle\kappa_{1}^{a-b} \tau_{b+d_{1}+d_{j}-1} \prod_{i \neq 1, j} \tau_{d_{i}}\right\rangle_{g} \\
&+ \frac{1}{2} \sum_{b=0}^{a} \sum_{r+s=b+d_{1}-2} \frac{a!}{(a-b)!}(2 r+1)!!(2 s+1)!!\beta_{b}\left\langle\kappa_{1}^{a-b} \tau_{r} \tau_{s} \prod_{i \neq 1} \tau_{d_{i}}\right\rangle_{g-1} \\
&+\frac{1}{2} \sum_{b=0}^{a} \sum_{\substack{c+c^{\prime}=a-b}} \sum_{\substack{J=\{2, \ldots, n\}}} \frac{a!}{r+s=b+d_{1}-2}(2 r+1)!!(2 s+1)!!\beta_{b} \\
& \times\left\langle\kappa_{1}^{c} \tau_{r} \prod_{i \in I} \tau_{d_{i}}\right\rangle_{g^{\prime}}\left\langle\kappa_{1}^{c^{\prime}} \tau_{s} \prod_{i \in J} \tau_{d_{i}}\right\rangle_{g-g^{\prime}},
\end{aligned}
$$

where

$$
\beta_{b}=\left(2^{2 b+1}-4\right) \frac{\zeta(2 b)}{\left(2 \pi^{2}\right)^{b}}=(-1)^{b-1} 2^{b}\left(2^{2 b}-2\right) \frac{B_{2 b}}{(2 b)!}
$$

Safnuk [23] gave a proof of the above differential form of Mirzakhani's recurson formula using localization techniques, but he also used the Mirzakhani-McShane formula. The relationship between Mirzakhani's recurson and matrix integrals has been studied by Eynard-Orantin [7] and Eynard [6].

Indeed, when $a=0$, Mulase-Safnuk differential form of Mirzakhani's recursion is just the Witten-Kontsevich theorem $[\mathbf{1 4}, \mathbf{2 4}]$ in the form of DVV recursion relation [4]. There are several other new proofs of Witten-Kontsevich theorem [3, 12, 13, 22] besides Mirzakhani's proof [20].

More discussions about Weil-Petersson volumes from the point of view of intersection numbers can be found in the papers $[\mathbf{5}, \mathbf{1 0}, \mathbf{1 8}, \mathbf{2 6}]$.

In Section 2, we show that Mirzakhani's recursion formula is essentially equivalent to the Witten-Kontsevich theorem via a formula from [11] expressing κ classes in terms of ψ classes. In Section 3, we present certain results of intersection numbers involving higher degree κ classes.

Acknowledgements. - We would like to thank Chiu-Chu Melissa Liu for helpful discussions. We also thank the referees for helpful suggestions.

2. Proof of Mirzakhani's recursion formula

We first give three lemmas. The following lemma can be found in [21].
Lemma 2.1. - The constants β_{b} in Mirzakhani's recursion satisfy the following:

$$
\sum_{k=0}^{\infty} \beta_{k} x^{k}=\frac{\sqrt{2 x}}{\sin \sqrt{2 x}}
$$

And its inverse:

$$
\left(\sum_{k=0}^{\infty} \beta_{k} x^{k}\right)^{-1}=\frac{\sin \sqrt{2 x}}{\sqrt{2 x}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k}}{(2 k+1)!} x^{k}
$$

Proof. - Since

$$
\sum_{n=0}^{\infty} \frac{B_{2 n}}{(2 n)!} x^{2 n}=\frac{x}{2} \frac{e^{x / 2}+e^{-x / 2}}{e^{x / 2}-e^{-x / 2}}=\frac{x}{2 i} \cot \frac{x}{2 i}
$$

we have

$$
\sum_{k=0}^{\infty} \beta_{k} x^{k}=\sqrt{2 x}\left(\cot \sqrt{\frac{x}{2}}-\cot \sqrt{2 x}\right)=\frac{\sqrt{2 x}}{\sin \sqrt{2 x}}
$$

The following elementary result is crucial to our proof.
Lemma 2.2. - Let $F(m, n)$ and $G(m, n)$ be two functions defined on $\mathbb{N} \times \mathbb{N}$, where $\mathbb{N}=\{0,1,2, \ldots\}$ is the set of nonnegative integers. Let α_{k} and β_{k} be real numbers that satisfy

$$
\sum_{k=0}^{\infty} \alpha_{k} x^{k}=\left(\sum_{k=0}^{\infty} \beta_{k} x^{k}\right)^{-1}
$$

Then the following two identities are equivalent:

$$
G(m, n)=\sum_{k=0}^{m} \alpha_{k} F(m-k, n+k), \quad \forall(m, n) \in \mathbb{N} \times \mathbb{N},
$$

$$
F(m, n)=\sum_{k=0}^{m} \beta_{k} G(m-k, n+k), \quad \forall(m, n) \in \mathbb{N} \times \mathbb{N}
$$

Proof. - Assume the first identity holds, then we have

$$
\begin{aligned}
\sum_{i=0}^{m} \beta_{i} G(m-i, n+i) & =\sum_{i=0}^{m} \beta_{i} \sum_{j=0}^{m-i} \alpha_{j} F(m-i-j, n+i+j) \\
& =\sum_{k=0}^{m} \sum_{i+j=k}\left(\beta_{i} \alpha_{j}\right) F(m-k, n+k) \\
& =\sum_{k=0}^{m} \delta_{k 0} F(m-k, n+k) \\
& =F(m, n)
\end{aligned}
$$

So we proved the second identity. The proof of the other direction is the same.
The fact that intersection numbers involving both κ classes and ψ classes can be reduced to intersection numbers involving only ψ classes was already known to Witten [9], and has been developed by Arbarello-Cornalba [2], Faber [8] and Kaufmann-Manin-Zagier [11] into a nice combinatorial formalism.

Lemma 2.3 ([11]). - For $m>0$,

$$
\left\langle\prod_{j=1}^{n} \tau_{d_{j}} \kappa_{1}^{m}\right\rangle_{g}=\sum_{k=1}^{m} \frac{(-1)^{m-k}}{k!} \sum_{\substack{m_{1}+\cdots+m_{k}=m \\ m_{i}>0}}\binom{m}{m_{1}, \ldots, m_{k}}\left\langle\prod_{j=1}^{n} \tau_{d_{j}} \prod_{j=1}^{k} \tau_{m_{j}+1}\right\rangle_{g}
$$

Proof. - (sketch) Let $\pi_{n+p, n}: \overline{\mathcal{M}}_{g, n+p} \longrightarrow \overline{\mathcal{M}}_{g, n}$ be the morphism which forgets the last p marked points and denote $\pi_{n+p, n *}\left(\psi_{n+1}^{a_{1}+1} \ldots \psi_{n+p}^{a_{p}+1}\right)$ by $R\left(a_{1}, \ldots, a_{p}\right)$, then we have the formula from [2]

$$
R\left(a_{1}, \ldots, a_{p}\right)=\sum_{\sigma \in \mathbb{S}_{p} \text { each cycle } c} \prod_{\sum_{j \in c} \sigma} a_{j},
$$

where we write any permutation σ in the symmetric group \mathbb{S}_{p} as a product of disjoint cycles.

A formal combinatorial argument [11] leads to the following inversion equation

$$
\kappa_{a_{1}} \cdots \kappa_{a_{p}}=\sum_{k=1}^{p} \frac{(-1)^{p-k}}{k!} \sum_{\substack{\{1, \ldots, p\}=S_{1}\left\lfloor\ldots \amalg S_{k} \\ S_{k} \neq \varnothing\right.}} R\left(\sum_{j \in S_{1}} a_{j}, \ldots, \sum_{j \in S_{k}} a_{j}\right),
$$

from which the result follows easily.

Proposition 2.4. - We have

$$
\begin{aligned}
& \sum_{b=0}^{a}(-1)^{b}\binom{a}{b} \frac{\left(2\left(d_{1}+b\right)+1\right)!!}{(2 b+1)!!}\left\langle\tau_{d_{1}+b} \prod_{i=2}^{n} \tau_{d_{i}} \kappa_{1}^{a-b}\right\rangle_{g} \\
& \quad=\sum_{j=2}^{n} \frac{\left(2 d_{1}+2 d_{j}-1\right)!!}{\left(2 d_{j}-1\right)!!}\left\langle\kappa_{1}^{a} \tau_{d_{1}+d_{j}-1} \prod_{i \neq 1, j} \tau_{d_{i}}\right\rangle_{g} \\
& \\
& +\frac{1}{2} \sum_{r+s=d_{1}-2}(2 r+1)!!(2 s+1)!!\left\langle\kappa_{1}^{a} \tau_{r} \tau_{s} \prod_{i \neq 1} \tau_{d_{i}}\right\rangle_{g-1} \\
& +\frac{1}{2} \sum_{\substack{c+c^{\prime}=a \\
I}}\binom{a}{c} \sum_{r+s=d_{1}-2}(2 r+1)!!(2 s+1)!!\left\langle\kappa_{1}^{c} \tau_{r} \prod_{i \in I} \tau_{d_{i}}\right\rangle_{g^{\prime}}\left\langle\kappa_{1}^{c^{\prime}} \tau_{s} \prod_{i \in J} \tau_{d_{i}}\right\rangle_{g-g^{\prime}}
\end{aligned}
$$

Proof. - Let LHS and RHS denote the left and right hand side of the equation respectively. By Lemma 2.3 and the Witten-Kontsevich theorem, we have

$$
\begin{aligned}
& \left(2 d_{1}+1\right)!!\left\langle\prod_{j=1}^{n} \tau_{d_{j}} \kappa_{1}^{a}\right\rangle_{g} \\
& =\left(2 d_{1}+1\right)!!\sum_{k=0}^{a} \frac{(-1)^{a-k}}{k!} \sum_{\substack{m_{1}+\cdots+m_{k}=a \\
m_{i}>0}}\binom{a}{m_{1}, \ldots, m_{k}}\left\langle\prod_{j=1}^{n} \tau_{d_{j}} \prod_{j=1}^{k} \tau_{m_{j}+1}\right\rangle_{g} \\
& =\sum_{k=0}^{a} \frac{(-1)^{a-k}}{k!} \sum_{\substack{m_{1}+\cdots+m_{k}=a \\
m_{i}>0}}\binom{a}{m_{1}, \ldots, m_{k}} \\
& \times\left(\sum_{j=2}^{n} \frac{\left(2\left(d_{1}+d_{j}\right)-1\right)!!}{\left(2 d_{j}-1\right)!!}\left\langle\tau_{d_{1}+d_{j}-1} \prod_{i \neq 1, j} \tau_{d_{i}} \prod_{i=1}^{k} \tau_{m_{i}+1}\right\rangle_{g}\right. \\
& +\sum_{j=1}^{k} \frac{\left(2\left(d_{1}+m_{j}\right)+1\right)!!}{\left(2 m_{j}+1\right)!!}\left\langle\tau_{d_{1}+m_{j}} \prod_{i=2}^{n} \tau_{d_{i}} \prod_{i \neq j} \tau_{m_{i}+1}\right\rangle_{g} \\
& +\frac{1}{2} \sum_{r+s=d_{1}-2}(2 r+1)!!(2 s+1)!!\left\langle\tau_{r} \tau_{s} \prod_{i=2}^{n} \tau_{d_{i}} \prod_{i=1}^{k} \tau_{m_{i}+1}\right\rangle_{g-1} \\
& +\frac{1}{2} \sum_{\substack{I \coprod \coprod^{J=\{2, \ldots, n\}} \\
I^{\prime} \coprod J^{\prime}=\{1, \ldots, k\}}} \sum_{r+s=d_{1}-2}(2 r+1)!!(2 s+1)!! \\
& \left.\times\left\langle\tau_{r} \prod_{i \in I} \tau_{d_{i}} \prod_{i \in I^{\prime}} \tau_{m_{i}+1}\right\rangle_{g^{\prime}}\left\langle\tau_{s} \prod_{i \in J} \tau_{d_{i}} \prod_{i \in J^{\prime}} \tau_{m_{i}+1}\right\rangle_{g-g^{\prime}}\right)
\end{aligned}
$$

