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A NEW TECHNIQUE FOR PROVING
UNIQUENESS FOR MARTINGALE PROBLEMS

by

Richard F. Bass & Edwin Perkins

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — A new technique for proving uniqueness of martingale problems is intro-
duced. The method is illustrated in the context of elliptic diffusions in Rd.

Résumé (Une nouvelle technique pour démontrer l’unicité de la solution de problèmes de martin-
gales)

Une nouvelle technique est introduite pour démontrer l’unicité de la solution de
problèmes de martingales. On applique les résultats aux diffusions elliptiques dans Rd.

1. Introduction

When trying to prove uniqueness of a stochastic process corresponding to an op-
erator, one of the most useful approaches is to consider the associated martingale
problem. If L is an operator and w is a point in the state space S, a probability P on
the set of paths t→ Xt taking values in S is a solution of the martingale problem for
L started at w if P(X0 = w) = 1 and f(Xt)− f(X0)−

∫ t
0

Lf(Xs) ds is a martingale
with respect to P for every f in an appropriate class C of functions.

The archetypical example is to let

(1.1) Lf(x) =
d∑

i,j=1

aij(x)Dijf(x).

Here, and for the rest of this paper, the state space S is Rd, the probability measure is
on the set of functions that are continuous maps from [0,∞) into Rd with the σ-field
generated by the cylindrical sets, Dijf = ∂2f/∂xi∂xj , and the class C of functions
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is the collection C2
b of C2 functions which are bounded and whose first and second

partial derivatives are bounded.
Stroock and Varadhan introduced the notion of martingale problem and proved

in the case above that there was existence and uniqueness of the solution to the
martingale problem provided the aij were bounded and continuous in x and the
matrix a(x) was strictly positive definite for each x. See [2] or [4] for an account of
this result.

In this paper we present a new method of proving uniqueness for martingale prob-
lems. We illustrate it for the operator L given in (1.1) under the assumption that
the aij are Hölder continuous in x. Our proof does not give as strong a result as that
of Stroock and Varadhan in that we require Hölder continuity. (Actually, we only
require a Dini-like condition, but this is still more than just requiring continuity.) In
fact, when the aij are Hölder continuous, an older method using Schauder estimates
can be applied.

Nevertheless our technique is applicable to situations for which no other known
method seems to work. A precursor of our method, much disguised, was used in [1]
to prove uniqueness for pure jump processes which were of variable order, i.e., the
operator can not be viewed as a perturbation of a symmetric stable process of any
fixed order. The result of [1] was improved in [5] to allow more general jump processes.
Moreover our technique is useful in problems arising from certain infinite dimensional
situations in the theory of stochastic partial differential equations and the theory of
superprocesses; see [3]. Finally, even in the elliptic diffusion case considered here, the
proof is elementary and short.

Stroock and Varadhan’s method was essentially to view L given in (1.1) as a
perturbation of the Laplacian with respect to the space Lp for appropriate p. The
method using Schauder estimates views L as a perturbation of the Laplacian with
respect to the Hölder space Cα for appropriate α. We use a quite different approach.
We view L as a mixture of constant coefficient operators and use a mixture of the
corresponding semigroups as an approximation of the semigroup for L.

We use our method to prove the following theorem.

Theorem 1.1. — Suppose L is given by (1.1), the matrices a(x) are bounded and uni-
formly positive definite, and there exist c1 and α such that

(1.2) |aij(x)− aij(y)| ≤ c1(1 ∧ |x− y|α)

for all i, j = 1, . . . , d and all x, y ∈ Rd. Then for each w ∈ Rd the solution to the
martingale problem for L started at w is unique.

We do not consider existence, since that is much easier, and we have nothing to
add to the existing proofs. The same comment applies to the inclusion of drift terms.
In Section 2 we give some easy estimates and in Section 3 we prove Theorem 1.1. The
letter c denotes constants whose exact value is unimportant and may change from
occurrence to occurrence.
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2. Some estimates

All the matrices we consider will be d by d, bounded, symmetric, and uniformly
elliptic, that is, there exist constants Λm and ΛM such that

(2.1) Λm

d∑
i=1

z2
i ≤

d∑
i,j=1

aijzizj ≤ ΛM

d∑
i=1

z2
i , (z1, . . . , zd) ∈ Rd.

Given any such matrix a, we use A for a−1. It follows easily that

(2.2) sup
j

( d∑
i=1

a2
ij

)1/2

≤ ΛM , sup
j

( d∑
i=1

A2
ij

)1/2

≤ Λ−1
m

Define

(2.3) pa(t, x, y) = (2πt)−d/2(det a)−1/2e−(y−x)TA(y−x)/(2t),

and let

(2.4) P at f(x) =

∫
pa(t, x, y)f(y) dy

be the corresponding transition operator. We assume throughout that the matrix
valued function a(y) satisfies the hypotheses of Theorem 1.1 and (2.1). Note that for
a fixed, pa(t, x, y) dy is a Gaussian distribution for each x, but that pa(y)(t, x, y) dy

need not be a probability measure. All numbered constants will depend only Λm,ΛM
and d.

We have the following.

Proposition 2.1. — There exist c1, c2 and a function c3(p), p > 0, depending only on
ΛM and Λm, such that for all t,N, p > 0 and x ∈ Rd,

(a)
∫
pa(y)(t, x, y) dy ≤ c1.

(b) ∫
|y−x|>N/

√
t

pa(y)(t, x, y) dy ≤ c1e−c2N
2

.

(c) For each i ≤ d, ∫ ( |xi − yi|2
t

)p
pa(y)(t, x, y) dy ≤ c3(p).

Proof. — For (a), after a change of variables z = (y − x)/
√
t, we need to bound∫

(2π)−d/2(det a(x+ z
√
t))−1/2e−z

TA(x+z
√
t)z/2 dz

≤
(ΛM

Λm

)d/2 ∫
(2πΛM )−d/2e−z

T z/2ΛM dz ≤
(ΛM

Λm

)d/2
.

(b) and (c) are similar.

Let ‖f‖ be the C0 norm of f .
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Proposition 2.2. — Let g ∈ C2 with compact support and let

Fε(x) =

∫
g(y)pa(y)(ε2, x, y) dy.

Then Fε(x) converges to g(x) boundedly and pointwise as ε→ 0.

Proof. — Because g is bounded, using Proposition 2.1(a) we see that the quantity
supε>0 ‖Fε‖ is finite. We next consider pointwise convergence. After a change of vari-
ables, we have

Fε(x) =

∫
g(x+ εz)(2π)−d/2(det a(x+ εz))−1/2e−z

TA(x+εz)z/2 dz.

Since |g(x+ εz)− g(x)| ≤ ε|z| ‖∇g‖, Fε differs from

g(x)

∫
(2π)−d/2(det(a(x+ εz))−1/2e−z

TA(x+εz)z/2 dz

by at most

‖∇g‖
∫

(2π)−d/2(det(a(x+ εz)))−1/2ε|z|e−z
TA(x+εz)z/2 dz,

and this goes to 0 as ε → 0 by a change of variables and Proposition 2.1(c) with
p = 1/2. Let

V (ε, x, z) = (2π)−d/2(det(a(x+ εz)))−1/2e−z
TA(x+εz)z/2.

It therefore suffices to show∫
V (ε, x, z) dz →

∫
V (0, x, z) dz,

where we note this right-hand side is 1. Using Proposition 2.1(b) and the same change
of variables, it suffices to show∫

|z|≤N
V (ε, x, z) dz →

∫
|z|≤N

V (0, x, z) dz.

But this last follows by dominated convergence.

Proposition 2.3. — There exists a constant c4 such that∫
|aij(y)− aij(x)| |Dijp

a(y)(t, x, y)| dy ≤

{
c4t

α
2−1, t ≤ 1,

c4t
−1, t ≥ 1.

Proof. — A computation shows that

Dijp
a(y)(t, x, y)(2.5)

= t−1pa(y)(t, x, y)
[∑
k

∑
l

(yk − xk)Aki(y)Alj(y)(yl − xl)
t

−Aij(y)
]
.
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By (2.2) and Cauchy-Schwarz we have∫
|aij(y)− aij(x)| |Dijp

a(y)(t, x, y)| dy

≤
[∫
|aij(y)− aij(x)|t−1pa(y)(t, x, y)[|x− y|2t−1Λ−2

m + Λ−1
m ] dy.(2.6)

Suppose first that t ≤ 1. By the Hölder condition on a the above is at most

c

∫
|y − x|α

tα/2

[ |x− y|2
t

+ 1
]
pa(y)(t, x, y) dy tα/2−1

≤ ctα/2−1,

where we have used Proposition 2.1(c) in the last inequality.
For the case t > 1 simply use the boundedness of a in (2.6) and Proposition 2.1

again to bound it by ct−1.

3. Proof of Theorem 1.1

For f ∈ C2
b and a a matrix with constant coefficients define

Maf(x) =
d∑

i,j=1

aijDijf(x).

Define the corresponding semigroup by (2.4), and let

Raλf =

∫ ∞
0

e−λtP at f dt.

For f ∈ C2
b we have

Lf(x) = Ma(x)f(x).

Note that

(3.1) (λ− Ma(y))R
a(y)
λ P a(y)

ε f(x) = P a(y)
ε f(x).

One way to verify that the superscript a(y) does not cause any difficulty here is to
check that

d∑
i,j=1

aij(y)
∂2

∂xi∂xj
pa(y)(s, x, y) =

∂

∂s
pa(y)(s, x, y),

and then in the definition of Ra(y)
λ use integration by parts in the time variable. By

replacing ε with ε/2, setting f(z) = pa(y)(ε/2, z, y) and using Chapman-Kolmogorov,
we see that (3.1) implies

(3.2) (λ− Ma(y))(R
a(y)
λ pa(y)(ε, ·, y))(x) = pa(y)(ε, x, y).

We are now ready to prove Theorem 1.1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009


