
Astérisque
327, 2009, p. 55–68

FEYNMAN INTEGRALS AS HIDA DISTRIBUTIONS: THE
CASE OF NON-PERTURBATIVE POTENTIALS

by

Martin Grothaus, Ludwig Streit & Anna Vogel

Dedicated to Jean-Michel Bismut as a small token of appreciation

Abstract. — In this note the concepts of path integrals as generalized expectations
of White Noise distributions is presented. Combining White Noise techniques with
a generalized time-dependent Doss’ formula Feynman integrands are constructed as
Hida distributions beyond perturbation theory.

Résumé (Les intégrales de chemins comme distributions de Hida: le cas de potentiel non-
perturbatif)

Dans cette note, on introduit les intégrales de chemins comme étant des espérances
de bruits blancs généralisés. On combine les techniques de bruits blancs avec une
généralisation de la méthode de Doss pour construire les « intégrales » de Feynman
comme distributions de Hida, au-delà de la théorie perturbative.

1. Introduction

Feynman “integrals", such as

J =

∫
d∞x exp

Ç
i

∫ t

0

(T (ẋ(s))− V (x(s))) ds

å
f(x(·))

are commonplace in physics and meaningless mathematically as they stand. Within
white noise analysis [1, 2, 9, 10, 12, 14, 15, 16, 17] the concept of integral has
a natural extension in the dual pairing of generalized and test functions and allows
for the construction of generalized functions (the “Feynman integrands") for various
classes of interaction potentials V , see e.g. [5, 6, 7, 10, 11, 13, 17], all of them by
perturbative methods. This work extends this framework to the case where these fail,
using complex scaling as in [4], see also [3].

In Section 2 we characterize Hida distributions. In Section 3 the U -functional is
constructed, see Theorem 3.3. We prove in Section 4 that we obtain a solution of the
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Schroedinger equation, see Theorem 4.4. The strategy for a general construction of
the Feynman integrand is provided in Section 5. Examples are given in Section 6.

2. White Noise Analysis

The white noise measure µ on Schwartz distribution space arises from the charac-
teristic function

C(f) := exp
(
− 1

2‖f‖
2
2

)
, f ∈ S(R),

via Minlos’ theorem, see e.g. [1, 9, 10]:

C(f) =

∫
S′

exp
(
i〈ω, f〉

)
dµ(ω).

Here 〈·, ·〉 denotes the dual pairing of S′(R) and S(R). We define the space(
L2
)

:= L2(S′(R), B, µ).

In the sense of an L2-limit to indicator functions 1[0,t), t > 0, a version of Wiener’s
Brownian motion is given by:

B(t, ω) := 〈ω,1[0,t)〉 =

∫ t

0

ω(s) ds, t > 0.

One then constructs a Gel’fand triple:

(S) ⊂ L2(µ) ⊂ (S)′

of Hida test functions and distributions, see e.g. [10]. We introduce the T -transform
of Φ ∈ (S)′ by

(TΦ)(g) :=
〈〈

Φ, exp
(
i〈·, g〉

)〉〉
, g ∈ S(R),

where 〈〈·, ·〉〉 denotes the bilinear dual pairing between (S)′ and (S). Expectation
extends to Hida distributions Φ by

Eµ(Φ) := 〈〈Φ, 1〉〉.

Definition 2.1. — A function F : S(R)→ C is called U -functional if
(i): F is “ray-analytic": for all g, h ∈ S(R) the mapping

R 3 y 7→ F (g + yh) ∈ C

has an analytic continuation to C as an entire function.
(ii): F is uniformly bounded of order 2, i.e., there exist some constants 0 < K,D <

∞ and a continuous norm ‖ · ‖ on S(R) such that for all w ∈ C, g ∈ S(R)

|F (wg)| ≤ K exp(D|w|2‖g‖2).

Theorem 2.2. — The following statements are equivalent:
(i): F : S(R)→ C is a U -functional.
(ii): F is the T -transform of a unique Hida distribution Φ ∈ (S)′.

For the proof and more see e.g. [10].
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3. Hida distributions as candidates for Feynman Integrands

In this section we construct Hida distributions as candidates for the Feynman
integrands. First we list which properties potentials must fulfill.

Assumption 3.1. — For O ⊂ R open, where R \ O is a set of Lebesgue measure zero,
we define the set D ⊂ C by

D :=
{
x+
√
iy
∣∣∣ x ∈ O and y ∈ R

}
,

and consider analytic functions V0 : D → C and f : C → C. Let 0 ≤ t ≤ T < ∞.
We require that there exists an 0 < ε < 1 and a function I : D → R such that its
restriction to O is measurable and locally bounded and
(3.1)

E

[∣∣∣∣∣ exp

(
−i
∫ t

0

V0

(
z+
√
iBs

)
ds

)
f
(
z+
√
iBt

)∣∣∣∣∣ exp

(
ε‖B‖2sup,T

2

)]
≤ I(z), z ∈ D,

uniformly in 0 ≤ t ≤ T . Here E denotes the expectation w.r.t. a Brownian motion B
starting at 0. ‖ · ‖sup,T denotes the supremum norm over [0, T ].

We shall consider time-dependent potentials of the form

Vġ : [0, T ]× D→ C
(t, z) 7→ V0(z) + ġ(t)z(3.2)

for g ∈ S(R).

Remark 3.2. — One can show that (3.1) implies that

E

[
exp

(
− i
∫ t−t0

0

Vġ

(
t− s, z +

√
iBs

)
ds

)
f
(
z +
√
iBt−t0

)]
,

is well-defined for all g ∈ S(R), 0 ≤ t0 ≤ t ≤ T and z ∈ D.

Theorem 3.3. — Let 0 < T < ∞ and ϕ : R → R be Borel measurable, bounded with
compact support. Moreover we assume that V0 and f fulfill Assumption 3.1. Then for
all 0 ≤ t0 ≤ t ≤ T , the mapping

Fϕ,t,f,t0 : S(R)→ C

g 7→ exp

(
− 1

2

∫
[t0,t]c

g2(s) ds

)∫
R

exp(−ig(t0)x)ϕ(x)

Å
G(g, t, t0) exp(ig(t)·)f

ã
(x) dx(3.3)

is a U -functional where for x ∈ O
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(3.4)
Å
G(g, t, t0) exp(ig(t)·)f

ã
(x) := E

[
exp

(
− i
∫ t−t0

0

Vġ

(
t− s, x+

√
iBs

)
ds

)

× exp
(
ig(t)

(
x+
√
iBt−t0

))
f
(
x+
√
iBt−t0

)]
.

Proof. — Fϕ,t,f,t0 is well-defined: (3.4) is finite because of (3.1), and the integral in
(3.3) exists since ϕ is bounded with compact support.

To show that Fϕ,t,f,t0 is a U -functional we must verify two properties, see Definition
2.1.

First Fϕ,t,f,t0 must have a “ray-analytic" continuation to C as an entire function.
I.e., for all g, h ∈ S(R) the mapping

R 3 y 7→ Fϕ,t,f,t0(g + yh) ∈ C

has an entire extension to C.
We note first that this is true for the expression

(3.5) u(y) := exp

(
− i
∫ t−t0

0

Vġ+yḣ

(
t− s, x+

√
iBs

)
ds

)
× exp

(
i (g + yh) (t)

(
x+
√
iBt−t0

))
f
(
x+
√
iBt−t0

)
inside the expectation in (3.4). Hence the integral of u over any closed curve in C is
zero. By Lebesgue dominated convergence the expectation E[u(w)] is continuous in
w. With Fubini ∮

E [u (w)] dw = E

ï∮
u (w) dw

ò
= 0,

for all closed paths, hence by Morera E(u(w)) is entire. This extends to (3.3) since ϕ
is bounded with compact support. Thus

C 3 w 7→ Fϕ,t,f,t0(g + wh) ∈ C

is entire for all 0 ≤ t0 ≤ t ≤ T and all g, h ∈ S(R).
Verification is straightforward that Fϕ,t,f,t0 is of 2nd order exponential growth,

Fϕ,t,f,t0 is a U-functional.

One can show the same result by choosing the delta distribution δx, x ∈ O, instead
of a test function ϕ:

Corollary 3.4. — Let V0 and f fulfill Assumption 3.1 and let x ∈ O. Then for all
0 ≤ t0 ≤ t ≤ T the mapping

Fδx,t,f,t0 : S(R)→ C

g 7→ exp

(
− 1

2

∫
[t0,t]c

g2(s) ds

)
exp(−ig(t0)x)

(
G(g, t, t0) exp(ig(t)·)

)
f(x)
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is a U -functional, where
(
G(g, t, t0) exp(ig(t)·)

)
f(x) is defined as in Theorem 3.3.

4. Solution to time-dependent Schrödinger equation

Assumption 4.1. — Let V0 : D → C and f : C → C such that Assumption 3.1 is
fulfilled and Vġ, g ∈ S(R), as in (3.2).

(i): For all u, v, r, l ∈ [0, T ] and all z ∈ D we require that

E1

[∣∣∣∣∣ exp

(
− i
∫ u

0

Vġ

(
v − s, z +

√
iB1

s

)
ds

)

×E2

[
exp

(
− i
∫ r

0

Vġ

(
l − s, z +

√
iB1

u +
√
iB2

s

)
ds

)
f
(
z +
√
iB1

u +
√
iB2

r

)]∣∣∣∣∣
]
<∞.

(4.1)

(ii): For all z ∈ D, 0 ≤ t0 ≤ t ≤ T and some 0 < ε ≤ T the functions

ω 7→ sup
0≤h≤ε

∣∣∣∣∣
(
Vġ

(
t, z +

√
iBh(ω)

)
+

∫ h

0

∂

∂t
Vġ

(
t+ h− s, z +

√
iBs(ω)

)
ds

)

× exp

(
− i
∫ h

0

Vġ

(
t+ h− s, z +

√
iBs(ω)

)
ds

)
f
(
z +
√
iBh(ω)

)∣∣∣∣∣(4.2)

and

ω 7→ sup
h∈[0,T ]

∣∣∣∣∣∆E2

[
exp

(
− i
∫ t−t0

0

Vġ

(
t− s, z +

√
iB1

h(ω) +
√
iB2

s

)
ds

)

× f
(
z +
√
iB1

h(ω) +
√
iB2

t−t0

)]∣∣∣∣∣(4.3)

are integrable.
Here B1 and B2 are Brownian motions starting at 0 with corresponding expectations
E1 and E2, respectively. Moreover ∆ denotes ∂2

∂z2 and ∂
∂t the derivative w.r.t. the first

variable.

We define H( D) to be the set of holomorphic functions from D to C. As pointed
out by H. Doss, see [4], under specified assumptions (similar to Assumption 3.1 and
Assumption 4.1 (ii)) there is a solution ψ : [0, T ] × D → C to the time-independent
Schrödinger equation, i.e., for all t ∈ [0, T ] and x ∈ O{

i ∂∂tψ(t, x) = − 1
2∆ψ(t, x) + V0(x)ψ(t, x)

ψ(0, x) = f(x),

which is given by

ψ(t, x) = E

[
exp

(
− i
∫ t

0

V0

(
x+
√
iBs

)
ds

)
f
(
x+
√
iBt

)]
.
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