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Abstract. — We consider jump diffusion process ξt on Rd determined by a canonical
SDE:

dξt =
∑m

i=1 Vi(ξt) � dZi
t + V0(ξt)dt,

where Zt = (Z1
t , ..., Z

m
t ) is an m-dimensional Lévy process and V0, ..., Vm are smooth

vector fields. We prove that the law of the solution ξt has a C∞-density under the fol-
lowing two conditions. (1) The Lévy process Zt is nondegenerate. (2) {V0, V1, ..., Vm}
can be degenerate but satisfies a uniform Hörmander condition (H). For the proof we
make use of the Malliavin calculus on the Wiener-Poisson space studied by Ishikawa-
Kunita.

Résumé (Densité lisse pour les solutions d’équations différentielles stochastiques avec sauts)
Nous considérons un processus de diffusion à sauts ξt dans Rd déterminé par une

EDS canonique:
dξt =

∑m
i=1

Vi(ξt) � dZi
t + V0(ξt)dt,

où Zt = (Z1
t , ..., Z

m
t ) est un processus de Lévy m-dimensionnel et V0, ..., Vm sont des

champs de vecteurs. Nous montrons que la loi de ξt a une densité C∞ si les condi-
tions suivantes sont satisfaites. (1) Le processus de Lévy Zt est non dégénéré. (2) La
distribution {V0, V1, ..., Vm} peut être dégénérée mais elle satisfait à une condition de
Hörmander uniforme (H). Pour la démonstration, nous utilisons le calcul de Malliavin
sur l’espace de Wiener-Poisson étudié par Ishikawa-Kunita.

1. Introduction and main results

Let V0, V1, · · ·Vm be smooth vector fields on Rd whose derivatives (including higher
orders) are all bounded. Let Zt = (Z1

t , ..., Z
m
t ), t ≥ 0 be an m-dimensional nondegen-

erate Lévy process. In this paper, we consider a jump diffusion determined by a
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canonical SDE based on {V0, V1, · · · , Vm} and Zt;

(1.1) dξt =
m∑
i=1

Vi(ξt) � dZit + V0(ξt)dt.

Canonical SDE’s are studied in mathematical finance. Let Zt be a one dimensional
Lévy process. We consider a one dimensional linear canonical SDE.

dSt = St � dZt.

The solution starting from S0 at time 0 is unique and it is written as St := S0 expZt
(See Section 2). It is called a geometric Lévy process. The solution St describes the
movement of a stock. If Zt is a Lévy process with finite Lévy measure (a compound
Poisson process), the process St is the Merton model or the Kou model, according
as the normalized Lévy measure is a Gaussian distribution or a double exponential
distribution, respectively. See [16],[8]. The precise definition of the canonical SDE
will be given at Section 2.

The main purpose of this paper is to show the existence of the smooth density for
the law of the random variable ξt that is a solution of equation (1.1). For this purpose
we need to assume suitable nondegenerate conditions both for the Lévy process Zt
and the family of vector fields {V0, ..., Vm}.

We first consider the Lévy process. The Lévy process Zt is represented for arbitrary
δ > 0, by

Zt = σWt +

∫ t

0

∫
0<|z|≤δ

zÑ(drdz) +

∫ t

0

∫
|z|>δ

zN(drdz) + bδt,

where σ is an m×m-matrix, Wt is an m-dimensional standard Brownian motion.
N(dtdz) is a Poisson random measure which is independent of Wt with intensity
N̂(dtdz) = dtν(dz), ν being the Lévy measure. Further, Ñ(dtdz) = N(dtdz)−N̂(dtdz)

and bδ = (b1δ , ..., b
m
δ ) is a drift vector. Set A = (aij) = σσT . It is a covariance of the

Gaussian part σW1 (Lévy-Itô decomposition). Throughout this paper, we assume that
the Lévy measure ν has finite moments of any order. Set v(ρ) :=

∫
|z|<ρ |z|

2ν(dz). If
there exists α ∈ (0, 2) such that

lim inf
ρ→0

v(ρ)

ρα
> 0,

then the Lévy measure is said to satisfy an order condition. Note that the Lévy
measure ν satisfying an order condition is an infinite measure: Indeed, we have
ν({z; 0 < |z| < δ}) = ∞ for any δ > 0. In case of one dimensional Lévy process,
the above order condition is known as a sufficient condition for the existence of the
smooth density of the law of the Lévy process (Orey’s theorem. See Sato [20], Propo-
sition 28.3). Then the law of the geometric Lévy process St has a smooth density if
the order condition is satisfied.
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Now we set bij(ρ) =
∫
|z|≤ρ z

izjν(dz)/v(ρ) and B(ρ) = (bij(ρ)). The infinitesimal
covariance B is a symmetric and nonnegative definite matrix, which coincides with
the greatest lower bound of the matrix B(ρ) as ρ→ 0. If the Lévy measure satisfies an
order condition and the matrix A+B is nondegenerate (invertible), then we say that
the Lévy process is nondegenerate. In this paper, we assume that the Lévy process Zt
is nondegenerate.

We will next consider nondegenete properties for the family of vector fields
{V0, ..., Vm}. In Ishikawa-Kunita [6], we studied the case where the family of vector
fields {V1, ..., Vm} is uniformly nondegenerate, i.e., there exists a positive constant C
such that the inequality

m∑
i=1

|lTVi(x)|2 ≥ C|l|2, ∀x ∈ Rd, ∀l ∈ Rd

holds valid, where lT is the transpose of l and lTV (x) denotes the inner product of
two vectors l and V (x). We showed the existence of the smooth density of its law by
applying Malliavin calculus on the Wiener-Poisson space.

In this paper we want to relax the above uniformly nondegenerate condition. Let
V0, ..., Vm be C∞-vector fields such that their derivatives (including higher orders)
are all bounded. Then Lie brackets [Vi1 [· · · [Vin−1 , Xin ] · · · ], i1, ..., in ∈ {0, 1, ...,m} are
bounded vector fields. We introduce families of vector fields. Let Σ0 = {V1, ..., Vm} be
a linear space of vector fields spanned by V1, ..., Vm. Given δ > 0, we set

V̂ δ0 = V0 +
m∑
i=1

biδVi.

Set Σδ0 = Σ0 and define for k = 1, 2, ...

Σδk =
{

[V̂ δ0 , V ] +
1

2

m∑
i,j=1

aij [Vi, [Vj , V ]], [Vi, V ], i = 1, ...,m, V ∈ Σδk−1

}
.

Theorem 1.1. — Assume that for the family of vector fields {V0, ..., Vm} there exist
a positive integer N0 and a positive number δ0 such that for any 0 < δ < δ0 the
inequality

(1.2)
N0∑
k=0

∑
V ∈Σδ

k

|lTV (x)|2 ≥ C(δ)|l|2, ∀x ∈ Rd, ∀l ∈ Rd

holds valid, where C(δ) are positive numbers satisfying

lim inf
δ→0

C(δ)/v(δ)2 =∞.

Then for any initial random variable ξ0 and 0 < T0 <∞, the law of the solution ξT0

of the canonical SDE (1.1) has a C∞-density.
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The condition required for vector fields in the above theorem is complicated, since
δ’s are involved. We can replace it by a simpler one if we restrict the Lévy process Zt
to a simpler one, namely if we assume

(1.3) b0 = lim
δ→0

bδ exists and is finite.

The existence of b0 is equivalent to that of limδ→0

∫
δ<|z|≤1

zν(dz). In this case, it
holds b0 = b1 − limδ→0

∫
δ<|z|≤1

zν(dz). In particular, if the integral
∫

0<|z|≤1
|z|ν(dz)

is finite, b0 exists and is finite. Hence for any stable process whose exponent is less
than 1, b0 exists. Further, if the Lévy measure ν is symmetric, b0 exists and is equal
to b1 even if

∫
0<|z|≤1

|z|ν(dz) is infinite. Hence for any symmetric stable process, b0
exists and is equal to b1.

Now, assume (1.3) and let δ → 0 in the Lévy-Itô decomposition of Zt. Then we
obtain

Zt = σWt +

∫ t

0

∫
|z|>0

zN(drdz) + b0t.

Hence b0 can be regarded as the drift vector of the Lévy process Zt. We define a new
drift vector field V̂0 by

V̂0 = V0 +
m∑
i=1

bi0Vi,

and introduce families of vector fields by Σ0 = {V1, ..., Vm} and for k = 1, ...

Σk =
{

[V̂0, V ] +
1

2

m∑
i,j=1

aij [Vi, [Vj , V ]], [Vi, V ], i = 1, ...,m, V ∈ Σk−1

}
.

Theorem 1.2. — Assume (1.3) for the Lévy process Zt. Assume further that the family
of vector fields {V̂0, V1, ..., Vm} satisfy the uniform Hörmander condition (H), i.e.,
there exists a positive integer N0 and a positive constant C such that

(1.4)
N0∑
k=0

∑
V ∈Σk

|lTV (x)|2 ≥ C|l|2, ∀x ∈ Rd, ∀l ∈ Rd

holds valid. Then for any initial random variable ξ0 and 0 < T0 < ∞, the law of the
solution ξT0 of the canonical SDE (1.1) has a C∞-density.

Observe that Theorem 1.2 indicates that both the canonical SDE with jumps and
Stratonovich SDE (diffusion) have the common local criterion (Hörmander’ condition)
for the existence of the smooth density of their laws. This is partly because that we
restrict our attention to small jumps of the SDE, ignoring the effect of big jumps.
Loosely speaking, under an order condition, the solution of equation (1.1) could behave
like a diffusion if sizes of jumps are small.
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Perhaps, Bismut [2] is the first work toward the smooth density of the law of the
solution of SDE with jumps, where he developed the Malliavin calculus for jump pro-
cesses. After this fundamental work, the similar problem has been discussed in some
different contexts by Léandre [13],[14],[15], Bichteler-Gravreau-Jacod [1], Komatsu-
Takeuchi [7] and others. A common feature in the above works might be that they
assumed for the Lévy measure ν the existence of a smooth density and an asymptotic
of the density as z → 0. Furthermore, a formula of integration by parts holds valid in
these cases, which are shown through Girsanov’s theorem for jump diffusion.

In our discussion any Lévy measure (singular or not) is allowed, as far as it satis-
fies an order condition. Then no formula of integration by parts is known. We take
another approach to the Malliavin calculus, developed in Ishikawa-Kunita [6]. It will
be presented in the next section.

2. Malliavin calculus for canonical SDE

Let Zt, t ≥ 0 be an m-dimensional Lévy process admitting the Lévy-Itô decomposi-
tion and let ξ0 be an Rd-valued random variable independent of Zt. By the solution of
equation (1.1) starting from ξ0 at time 0, we mean a cadlag Rd-valued semimartingale
{ξt; t ≥ 0} adapted to F t = σ(ξ0, Zr; r ≤ t) satisfying

ξt = ξ0 +
m∑
i=1

∫ t

0

Vi(ξr) � dZir +

∫ t

0

V0(ξr)dr(2.1)

= ξ0 +
m∑

i,k=1

∫ t

0

Vi(ξr)σik ◦ dW k
r +

∫ t

0

V̂ δ0 (ξr)dr.

+

∫ t

0

∫
|z|<δ
{φz1(ξr−)−ξr−}Ñ(drdz)

+

∫ t

0

∫
|z|≥δ
{φz1(ξr−)−ξr−}N(drdz)

+

∫ t

0

∫
|z|<δ
{φz1(ξr)−ξr−

m∑
i=1

ziVi(ξr)}N̂(drdz).

Here ” ◦ ” denotes the Stratonovitch integral. Using Itô integral, it holds
m∑
k=1

∫ t

0

Vi(ξr)σik ◦ dW k
r

=
m∑
k=1

∫ t

0

Vi(ξr−)σikdW
k
r +

1

2

m∑
j=1

aij

∫ t

0

( d∑
l=1

∂Vi
∂xl

V lj

)
(ξr−)dr.

Further, for z = (z1, ..., zm) ∈ Rm φzs, s ∈ R is the one parameter group of diffeomor-
phisms generated by the vector field

∑m
i=1 z

iVi, i.e., φzs = exp s(
∑
i z
iVi).
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