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TWO-PARAMETER STOCHASTIC CALCULUS
AND MALLIAVIN’S INTEGRATION-BY-PARTS

FORMULA ON WIENER SPACE
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Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — The integration-by-parts formula discovered by Malliavin for the Itô map
on Wiener space is proved using the two-parameter stochastic calculus. It is also
shown that the solution of a one-parameter stochastic differential equation driven by
a two-parameter semimartingale is itself a two-parameter semimartingale.

Résumé (Calcul stochastique à deux paramètres et formule d’intégration par parties de Malliavin
sur l’espace de Wiener)

La formule d’intégration par parties, qui a été établie par Malliavin pour l’appli-
cation d’Itô sur l’espace de Wiener, est démontrée en utilisant le calcul stochastique
à deux paramètres. On montre aussi que la solution d’une équation différentielle sto-
chastique à un paramètre, guidée par une semimartingale à deux paramètres, est
elle-même une semimartingale à deux paramètres.

1. Introduction

The stochastic calculus of variations was conceived by Malliavin [6, 7, 8] as follows.
Let (zt)t>0 denote the Ornstein–Uhlenbeck process on Wiener space (W, W , µ) and
let Φ : W → Rd denote the (almost-everywhere unique) Itô map obtained by solving
a stochastic differential equation in Rd up to time 1. Then (zt)t>0 is stationary and
reversible, so, for functions f, g on Rd, setting F = f ◦ Φ, G = g ◦ Φ,

(1) E [{F (zt)− F (z0)}{G(zt)−G(z0)}] = −2E [F (z0){G(zt)−G(z0)}] .

Once certain terms of mean zero are subtracted, a differentiation of this identity with
respect to t inside the expectation is possible, and leads to the integration-by-parts
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formula on Wiener space

(2)
∫
W

∇if(Φ)Γij∇jg(Φ)dµ = −
∫
W

f(Φ)LGdµ,

where LG and the covariance matrix Γ will be defined below. As is now well known,
this formula and its generalizations hold the key to many deep results of stochastic
analysis.

Malliavin’s proof of the integration-by-parts formula was based on a transfer princi-
ple, allowing some calculations for two-parameter random processes to be made using
classical differential calculus. Stroock [11, 12, 13] and Shigekawa [10] gave alterna-
tive derivations having a a more functional-analytic flavour. Bismut [1] gave another
derivation based on the Cameron–Martin–Girsanov formula. Elliott and Kohlmann
[3] and Elworthy and Li [4] found further elementary approaches to the formula.
The alternative proofs are relatively straightforward. Nevertheless, we have found it
interesting to go back to Malliavin’s original approach in [8] and to review the calcu-
lations needed, especially since this can be done now in a more explicit way using the
two-parameter stochastic calculus, as formulated in [9].

In Section 2 we review in greater detail the various mathematical objects men-
tioned above. Then, in Section 3, we review some points of two-parameter stochastic
calculus from [9]. Section 4 contains the main technical result of the paper, which
is a regularity property for two-parameter stochastic differential equations. We con-
sider equations in which some components are given by two-parameter integrals and
others by one-parameter integrals. It is shown, under suitable hypotheses, that the
components which are presented as one-parameter integrals are in fact two-parameter
semimartingales. This is useful because one can then compute martingale proper-
ties for both parameters by stochastic calculus. The sorts of differential equation to
which this theory applies are just one way to realise continuous random processes
indexed by the plane. See the survey [5] by Léandre for a wider discussion. But this
regularity property makes our processes more tractable to analyse than some others.
This is illustrated in Section 5, where we do the calculations needed to obtain the
integration-by-parts formula.

2. Integration-by-parts formula

The Wiener space (W, W , µ) over Rm is a probability space with underlying
set W = C([0,∞),Rm), the set of continuous paths in Rm. Let W o denote the
σ-algebra on W generated by the family of coordinate functions w 7→ ws : W → Rm,
s > 0, and let µo be Wiener measure on W o, that is to say, the law of a Brownian
motion in Rm starting from 0. Then (W, W , µ) is the completion of the probability
space (W, W o

, µo). Write W s for the µ-completion of σ(w 7→ wr : r 6 s). Let
X0, X1, . . . , Xm be vector fields on Rd, with bounded derivatives of all orders. Fix
x0 ∈ Rd and consider the stochastic differential equation

∂xs = Xi(xs)∂w
i
s +X0(xs)∂s.
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Here and below, the index i is summed from 1 to m, and ∂ denotes the Stratonovich
differential. There exists a map x : [0,∞)×W → Rd with the following properties:

– x is a continuous semimartingale on (W, W , ( W s)s>0, µ),
– for µ-almost all w ∈W , for all s > 0 we have

xs(w) = x0 +

∫ s

0

Xi(xr(w))∂wir +

∫ s

0

X0(xr(w))dr.

The first integral in this equation is the Stratonovich stochastic integral. Moreover,
for any other such map x′, we have xs(w) = x′s(w) for all s > 0, for µ-almost all w.
We have chosen here a Stratonovich rather than an Itô formulation to be consistent
with later sections, where we have made this choice in order to take advantage of the
simpler calculations which the Stratonovich calculus allows. The Itô map referred to
above is the map Φ(w) = x1(w).

We can define on some complete probability space, (Ω, F ,P) say, a two-parameter,
continuous, zero-mean Gaussian field (zst : s, t > 0) with values in Rm, and with
covariances given by

E(zistz
j
s′t′) = δij(s ∧ s′)e−|t−t

′|/2.

Such a field is called an Ornstein–Uhlenbeck sheet. Set zt = (zst : s > 0). Then,
for t > 0, both z0 and zt are Brownian motions in Rm and (z0, zt) and (zt, z0) have
the same distribution. We have now defined all the terms in, and have justified, the
identity (1).

Consider the following stochastic differential equation for an unknown process (Us :

s > 0) in the space of d× d matrices

∂Us = ∇Xi(xs)Us∂w
i
s +∇X0(xs)Us∂s, U0 = I.

This equation may be solved, jointly with the equation for x, in exactly the same sense
as the equation for x alone. Thus we obtain a map U : [0,∞)×W → Rd⊗ (Rd)∗, with
properties analogous to those of x. Moreover, by solving an equation for the inverse,
we can see that Us(w) remains invertible for all s > 0, for almost all w. Write U∗s for
the transpose matrix and set Γs = UsCsU

∗
s , where

Cs =

∫ s

0

U−1
r Xi(xr)⊗ U−1

r Xi(xr)dr.

Set also

Ls = −Us
∫ s

0

U−1
r Xi(xr)∂w

i
r + Us

∫ s

0

U−1
r {∇2Xi(xr)∂w

i
r +∇2X0(xr)dr}Γr,

+ Us

∫ s

0

U−1
r ∇Xi(xr)Xi(xr)dr

and define for G = g ◦ Φ

LG = Li1∇ig(x1) + Γij1 ∇i∇jg(x1).

We have now defined all the terms appearing in the integration-by-parts formula (2).
We will give a proof in Section 5.
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3. Review of two-parameter stochastic calculus

In [9], building on the fundamental works of Cairoli and Walsh [2] and Wong and
Zakai [14, 15], we gave an account of two-parameter stochastic calculus, suitable for
the development of a general theory of two-parameter hyperbolic stochastic differential
equations. We recall here, for the reader’s convenience, the main features of this
account.

We take as our probability space (Ω, F ,P) the canonical complete probability space
of anm-dimensional Brownian sheet (wst : s, t > 0), extended to a process (wst : s, t ∈
R) by independent copies in the other three quadrants. Thus wst = (w1

st, . . . , w
m
st) is

a continuous, zero-mean Gaussian process, with covariances given by

E(wistw
j
s′t′) = δij(s ∧ s′)(t ∧ t′), i, j = 1, . . . ,m, s, t > 0, s′, t′ > 0.

It will be convenient to define also w0
st = st for all s, t ∈ R. For s, t > 0, write F st for

the completion with respect to P of the σ-algebra generated by wru for r ∈ (−∞, s]
and u ∈ (−∞, t]. We say that a two-parameter process (xst : s, t > 0) is adapted if xst
is F st-measurable for all s, t > 0, and is continuous if (s, t) 7→ xst(ω) is continuous on
(R+)2 for all ω ∈ Ω. The previsible σ-algebra on Ω× (R+)2 is that generated by sets
of the form A× (s, s′]× (t, t′] with A ∈ F st. If we allow A ∈ F s∞ in this definition,
we get the s-previsible σ-algebra.

The classical approach to defining stochastic integrals, by means of an isometry of
Hilbert spaces, adapts in a straightforward way from one-dimensional times to two,
allowing the construction of stochastic integrals with respect to certain two-parameter
processes, in particular with respect to the Brownian sheet. Given an s-previsible
process(1) (as(t) : s, t > 0), such that

E
∫ s

0

∫ t

0

ar(u)2drdu <∞

for all s, t > 0, we can define, for i = 1, . . . ,m and all t1, t2 > 0 with t1 6 t2,
one-parameter processes M and A by

(3) Ms =

∫ s

0

∫ t2

t1

ar(t)drdtw
i
rt, As =

∫ s

0

∫ t2

t1

ar(t)
2drdt.

ThenM is a continuous ( F s∞)s>0-martingale, with quadratic variation process [M ] =

A. A localization argument by adapted initial open sets (see below) allows an extension
of the integral under weaker integrability conditions. By the Burkholder–Davis–Gundy
inequalities, for all α ∈ [2,∞), there is a constant C(α) <∞ such that

(4) E

(∣∣∣∣∣
∫ s2

s1

∫ t2

t1

as(t)dsdtw
i
st

∣∣∣∣∣
α)

6 C(α)E

Ñ∣∣∣∣∣∫ s2

s1

∫ t2

t1

as(t)
2dsdt

∣∣∣∣∣
α/2

é
.

(1) We write any time parameter with respect to which a process is previsible, here s, as a subscript.
Where previsibility is not assumed, here in t, we write the parameter in parentheses.
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By an (s, t)-semimartingale, s-semimartingale, t-semimartingale, we mean, respec-
tively, previsible processes (xst : s, t > 0), (pst : s, t > 0), (qst : s, t > 0) for which we
may write

xst − xs0 − x0t + x00

=
m∑
i=0

∫ s

0

∫ t

0

(x′′ru)idrduw
i
ru +

m∑
i,j=0

∫ s

0

∫ t

−1

Ç∫ s

−1

∫ t

0

(x′′ru(r′, u′))ijdr′duw
j
r′u

å
drdu′wiru′

and

pst−p0t =
m∑
i=0

∫ s

0

∫ t

−1

(p′rt(u
′))idrdu′wiru′ , qst−qs0 =

m∑
i=0

∫ s

−1

∫ t

0

(q′su(r′))idr′duw
i
r′u.

Here, (x′′st : s, t > 0) is a previsible process, having components (x′′st)i, subject to
certain local integrability conditions, which are implied, in particular, by almost sure
local boundedness. The process (x′′st(r, u) : s, t > 0, r, u ∈ R) is required to be previs-
ible in (ω, s, t) and (Borel) measurable in (r, u), with x′′st(r, u) = 0 for r > s or u > t,
and is subject to similar local integrability conditions. The inner and outer parts of
the second integral are both cases of the stochastic integral at (3), or its t-analogue,
or of the usual Lebesgue integral, and the value of the iterated integral is unchanged
if we reverse the order in which the integrals are taken. The integrals appearing in
the expression for xst are called stochastic integrals of the first and second kind. The
processes (p′st(u) : s, t > 0, u ∈ R) and (q′st(r) : s, t > 0, r ∈ R) are required to be
previsible in (ω, s, t) and measurable in u and r, respectively, with p′st(u) = 0 for
u > t and q′st(r) = 0 for r > s, and are subject to similar local integrability condi-
tions. For fixed t > 0, if (xs0 : s > 0) is a continuous ( F s0)s>0-semimartingale, then
(xst : s > 0) is a continuous ( F st)s>0-semimartingale, in the usual one-parameter
sense. Also (pst : s > 0) is a continuous ( F st)s>0-semimartingale, for all t > 0.

The heuristic formulae

dsdtxst =
m∑
i=0

(x′′st)idsdtw
i
st +

m∑
i,j=0

∫ s

−1

∫ t

−1

(x′′st(r, u))ijdsduw
i
sudrdtw

j
rt,

dspst =
m∑
i=0

∫ t

−1

(p′st(u))idsduw
i
su,

dtqst =
m∑
i=0

∫ s

−1

(q′st(r))idrdtw
i
rt

provide a good intuition in representing the two-parameter increment

dsdtxst = xs+ds,t+dt − xs,t+dt − xs+ds,t + xst

and the one-parameter increments dspst = ps+ds,t − pst and dtqst = qs,t+dt − qst in
terms of a linear combinations of increments, and of products of increments of the
Brownian sheet.
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