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CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCES
IN NONLINEAR HYPERBOLIC EQUATIONS

Rémi Carles, Christophe Cheverry

Abstract. – This article introduces a physically realistic model for explaining how
electromagnetic waves can be internally generated, propagate and interact in strongly
magnetized plasmas or in nuclear magnetic resonance experiments. It studies high fre-
quency solutions of nonlinear hyperbolic equations for time scales at which dispersive
and nonlinear effects can be present in the leading term of the solutions. It explains
how the produced waves can accumulate during long times to produce constructive
and destructive interferences which, in the above contexts, are part of turbulent ef-
fects.

Résumé (Interférences constructives et destructives pour des équations hyperboliques
non linéaires)

Cet article introduit un modèle physiquement réaliste qui explique comment, dans
des plasmas fortement magnétisés ou lors d’expériences de résonance magnétique nu-
cléaire, des ondes électromagnétiques peuvent être créées, se propager et interagir.
Il étudie des solutions haute fréquence de systèmes hyperboliques non linéaires pour
lesquelles des effets dispersifs et non linéaires sont impliqués à l’ordre principal. Il
explique les modalités selon lesquelles les ondes produites peuvent s’accumuler dans
le temps long pour produire des interférences constructives et destructives qui, dans
ce contexte, peuvent être interprétés comme des phénomènes de turbulence.

© Mémoires de la Société Mathématique de France 174, SMF 2022
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CHAPTER 1

INTRODUCTION

In this introduction, we present the main aspects of our text. In Section 1.1, we
introduce a simple ODE model that is intended to serve as a guideline. In Section 1.2,
we extend this model to better incorporate important specificities of two realistic situ-
ations which are related to strongly magnetized plasmas (SMP) and nuclear magnetic
resonance (NMR). In Section 1.3, we state under simplified assumptions our two main
results, Theorems 1.3 and 1.4. We also give an overview of our article.

1.1. A toy model

Introduce the phase φ : R→ R given by

(1.1) φ(t) := t+ γ(cos t− 1), γ ∈ ]0, 1/4[.

Let ε ∈ ]0, 1] be a small parameter, and λ ∈ C. Fix numbers (j1, j2, ν) ∈ N2 ×R such
that j1 + j2 ≥ 2. Select n ∈ Z and ω ∈ R. Then, define

(1.2) FL(ε, t) := ε3/2einφ(t)/ε, FNL(ε, t, u) := λενeiωt/εuj1 ūj2 .

Definition 1.1. – The number g := ω + j1 − j2 ∈ R is called the gauge parameter
associated with FNL.

Consider the ordinary differential equation on the complex plane C given by

(1.3)
d

dt
u− i

ε
u = F (ε, t, u) := FL(ε, t) + FNL(ε, t, u), u|t=0

= 0.

We can study the equation (1.3) on three different time scales:
• Fast, when t ∼ ε, that is when F undergoes a few number of oscillations;
• Normal, when t ∼ 1, that is when F generates O(ε−1) oscillations, whereas the

periodic part (cos t) inside φ sees a few number of oscillations;
• Slow, when t ∼ ε−1 or T := εt ∼ 1, that is when F involves O(ε−2) oscillations.

In this subsection, we analyze (1.3) during long times t ∼ ε−1 or T ∼ 1. With this
in mind, we can change u according to

(1.4) u(t) = εeit/εU(εt), U(T ) := ε−1e−iT/ε
2

u(ε−1T ).
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2 CHAPTER 1. INTRODUCTION

Expressed in terms of U , the equation (1.3) becomes

(1.5)
d

dT
U =

1√
ε
ei(n−1)T/ε2+inγ(cos(T/ε)−1)/ε + λεν+j1+j2−2ei(g−1)T/ε2U j1 Ū j2 .

The initial data is still zero. Denote by Ulin the solution corresponding to the linear
evolution, that is the solution obtained from (1.5) when λ = 0. When λ ̸= 0 and when
ν + j1 + j2 > 2, the solution to (1.5) looks like Ulin. Our aim is to first study the
expression Ulin. Then, we incorporate nonlinear effects by looking at a critical size for
the nonlinearity, corresponding to the special case λ ̸= 0 and ν + j1 + j2 = 2. This
means to single out the following equation

(1.6)
d

dT
U =

1√
ε
ei(n−1)T/ε2+inγ(cos(T/ε)−1)/ε + λei(g−1)T/ε2U j1 Ū j2 , U|T=0

= 0.

The integral formulation of (1.6) reads

(1.7) U(T ) = Ulin(T ) + λ

∫ T

0

ei(g−1)s/ε2U(s)j1 Ū(s)j2ds.

In Paragraph 1.1.1, we first show that Ulin(T ) = O(1), an estimate which is sharp
when n = 1. As a consequence, the nonlinear contribution brought by the integral
term inside (1.7) is likely to be of the same order of magnitude as the linear one. It
can be expected that U(T ) ̸≡ Ulin(T ) + o(1). In Paragraph 1.1.2, we prove that this
is indeed the case if and only if g = 1.

1.1.1. The linear case. – By construction, we have

(1.8) ulin(t) := εeit/εUlin(εt) = ε3/2eit/ε
∫ t

0

ei[nφ(s)−s]/εds.

We start the analysis of (1.7) by looking at the part Ulin through the expression ulin

of (1.8). Examine the right hand side of (1.8). For harmonics n ∈ Z with n ̸= 1, since
0 < γ < 1/4, remark that

(1.9) ∀s ∈ R, 1/2 ≤ |nφ′(s)− 1| = |n− 1− γn sin s|.

Exploiting (1.9), a single integration by parts yields

∀t ≥ 0, ulin(t) = O
(
ε5/2(1 + t)

)
.

In other words, assuming that n ̸= 1, we find

(1.10) ∀T ≥ 0, Ulin(T ) = O(ε3/2 +
√
εT ).

The situation is completely different when n = 1. Fix an integer K ≥ 1. The solution
ulin computed at the time t = 2Kπ can be viewed as a sum of contributions produced
over time by the source term, namely

(1.11) ulin(2Kπ) =

K−1∑
k=0

uk, uk := ε3/2ei2Kπ/ε
∫ 2(k+1)π

2kπ

ei[φ(s)−s]/εds.
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1.1. A TOY MODEL 3

Since the function s 7→ φ(s) − s = γ(cos s − 1) is periodic of period 2π, the wave
packets uk can be interpreted according to uk = ε3/2ei2Kπ/εvk with

(1.12) vk =

∫ 2kπ+3π/2

2kπ−π/2
eiγ(cos s−1)/εds = v :=

∫ 3π/2

−π/2
eiγ(cos s−1)/εds.

The function s 7→ γ(cos s−1) has exactly two non-degenerate stationary points in the
interval [2kπ−π/2, 2kπ+3π/2], at the positions s = 2kπ and s = 2kπ+π. Using the
periodicity to get rid of the boundary terms and applying stationary phase formula,
it follows that

(1.13) v =

√
2πε

γ
e−i

γ
ε

(
ei(

γ
ε−

π
4 ) + e−i(

γ
ε−

π
4 )
)

+O
(
ε3/2

)
.

Let Aε ∈ C be such that

(1.14) A2
ε =

√
2

πγ
e−i

γ
ε cos

(γ
ε
− π

4

)
, lim sup

ε→0
|A2
ε| =

√
2

πγ
̸= 0.

Observe that

(1.15) v = 2πA2
ε

√
ε+O

(
ε3/2

)
, |uk| = 2π|A2

ε|ε2 +O
(
ε3
)
.

The combination of (1.11), (1.14) and (1.15) indicates that, when n = 1, wave pack-
ets uk of amplitude ε2 are repeatedly created over time when solving (1.3) in the
case λ = 0.

Look at (1.11). The emitted signals uk (one per period 2π) have cumulative effects
up to the stopping time 2Kπ. They give rise to a growth rate with respect to the time
variable t. For long times T ∼ 1, assuming that n = 1, we can assert that

(1.16) Ulin(T ) = A2
εT +O(ε) = A2

ε

∫ +∞

0

1[0,T ](s)ds+O(ε) = O(1).

This short discussion about the linear situation (λ = 0) highlights a difference between
the cases n ̸= 1—see (1.10)—and n = 1—see (1.16). This observation is important
in the perspective of nonlinear effects. As a matter of fact, it allows a first selection
between the different modes n ∈ Z.

1.1.2. Nonlinear effects. – Here, we consider the nonlinear framework, when λ ̸= 0

and ν + j1 + j2 = 2. The difference W := U − Ulin is subject to

(1.17) W(T ) = λ

∫ T

0

ei(g−1)s/ε2(Ulin +W)(s)j1(Ūlin + W̄)(s)j2ds.

Using a Picard scheme, it is easy to infer that the life span of the solution W to the
integral equation (1.17), and therefore of the solution U to (1.6), can be bounded
below by a positive constant not depending on ε ∈ ]0, 1]. Knowing (1.10) and (1.16),
it is also possible to deduce that W(T ) is of size O(ε(j1+j2)/2) = O(ε) when n ̸= 1,
and of size O(1) when n = 1. This means that the preceding dichotomy between the
two cases n ̸= 1 and n = 1 remains when λ ̸= 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



4 CHAPTER 1. INTRODUCTION

Fact 1. – When solving (1.6), the harmonic n = 1 stands out from the others.
Given T > 0, we find U(T ) = O(

√
ε) when n ̸= 1, and U(T ) = O(1) when n = 1.

Assume that g ̸= 1. The identity (1.7) becomes after an integration by parts

U(T ) = Ulin(T )− iλε2

g− 1
ei(g−1)T/ε2U(T )j1 Ū(T )j2(1.18)

+
iλε2

g− 1

∫ T

0

ei(g−1)s/ε2∂s
(
U(s)j1 Ū(s)j2

)
ds.

From the Equation (1.6), since we have seen that the solution U is (at least) bounded,
we know that ∂sU(s) = O(ε−1/2). From (1.18), it follows that

∀T ∈ R, U(T ) = Ulin(T ) +O(ε3/2).

Now, assume that n = 1 and moreover that g = 1. To show that, in this situation,
nonlinear effects actually occur, it suffices to produce an example. To this end, take
(j1, j2, ν) = (2, 0, 0) and ω = −1, so that g = 1. Choose λ = 1. Then, using (1.16),
the identity (1.7) becomes

(1.19) U(T ) = A2
εT +O(ε) +

∫ T

0

U(s)2ds.

This implies that U(T ) = Aε tan(AεT ) +O(ε), and therefore

U(T )− Ulin(T ) = Aε tan(AεT )−A2
εT +O(ε) ̸= o(1).

In view of the above formula, the asymptotic behavior of the nonlinear solution U can
strongly differ from the one of the linear solution Ulin.

Fact 2. – When solving (1.6), the gauge parameter g = 1 stands out from the others.
When g ̸= 1, the asymptotic behaviors of U and Ulin when ε goes to 0 are the same.
On the contrary, when g = 1, nonlinear effects can be expected at leading order.

1.2. A more realistic model

The preceding features, Facts 1 and 2, which have been emphasized in the case
of ODEs, are still present when dealing with partial differential equations arising in
strongly magnetized plasmas (SMP) or in nuclear magnetic resonance experiments
(NMR). But, there are two emerging issues: the first is due to dispersive effects which
are completely absent in the ODE case; the second comes from the occurrence of non-
trivial spatial variations when dealing with the phase φ. At all events, the discussion
becomes much more subtle, and new important phenomena can and do occur.

In order to investigate SMP or NMR, we must consider the PDE counterpart of
(1.3), which is

(1.20) ∂tu−
i

ε
p(εDx)u = F = FL + FNL, u|t=0

= 0, 0 < ε≪ 1,

MÉMOIRES DE LA SMF 174



1.2. A MORE REALISTIC MODEL 5

where t ∈ R and x ∈ R. The state variable is u ∈ R and Dx := −i∂x. The action of the
pseudo-differential operator p(εDx) is given on the Fourier side by the multiplier p(εξ).

In what follows, we will focus on the scalar wave equation (1.20). The origin of
equation (1.20), its physical significances and the reasons why it may be seen as a
universal problem (when dealing with systems of hyperbolic equations) will be clearly
explained in Chapters 2 and 3. We will work in space dimension one. The possible
multidimensional effects will not be investigated here.

We now fix some notations and we introduce simplified assumptions intended to fa-
cilitate the presentation of our main results. We suppose that the symbol p is smooth,
say p ∈ C∞(R). The function p is even. It is such that p|[−ξc,ξc]

≡ 0 for some ξc ≥ 0.
It is strictly increasing on (ξc,∞). Moreover, for large values of ξ, it is subject to

(1.21) lim
ξ→+∞

p(ξ) = 1, lim
ξ→+∞

p′(ξ) = 0, ∃ℓ < 0, lim
ξ→+∞

ξ4p′′(ξ) = ℓ,

as well as

(1.22) ∃D ≥ 4; ∀n ∈ {2, . . . , D}, lim sup
ξ→+∞

|p(n)(ξ)|
p′(ξ)

< +∞.

Fix some M ∈ N∗. The source term FL is defined by

(1.23) FL(ε, t, x) = −ε3/2
∑

m∈[−M,M ]\{0}

am(εt, t, x)eimφ(t,x)/ε.

In the above line (1.23), the amplitudes am(T, t, x) are chosen in the set C∞b (R3) of
smooth functions whose derivatives are all bounded. They are selected in such a way
that, for some T > 0 and some r ∈ R∗+ with r < γ/2, we have

(1.24) ∀m ∈ [−M,M ] \ {0}, suppam ⊂ ]−∞, T ]× [1,+∞[× [−r, r].

The amplitude a1(T, t, x) is chosen periodic for large times in the second variable. In
other words, there exists ts ∈ R∗+ and a smooth function a(T, t, x) such that

(1.25) ∀t ≥ ts, ∀n ∈ N, a1(·, t+ nπ, ·) ≡ a(·, t+ nπ, ·) ≡ a(·, t, ·).

The phase φ arising in (1.23) is more general than in (1.1). It does depend on the
spatial variable x ∈ R. It is the sum of a quadratic part (in t and x) and a periodic
part (in t).

Assumption 1.2 (Selection of a relevant phase φ). – The function φ is

(1.26) φ(t, x) = t− xt+ γ(cos t− 1), 0 < γ < 1/4.

In Chapter 2, the above assumptions on p and φ will be motivated by the study of
two realistic situations which are related to strongly magnetized plasmas (SMP) and
nuclear magnetic resonance (NMR). In Chapter 3, to better incorporate important
specificities of SMP and NMR, they will be somewhat generalized.

In the right hand side of (1.20), the nonlinear part FNL is, up to some localization
in time and space, of the same form as in the previous subsection. Select a nonnegative
cut-off function χ which is equal to 1 in a neighborhood of the origin and which is
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6 CHAPTER 1. INTRODUCTION

such that suppχ ⊂ [−1, 1]. Fix some parameter ι ∈ [0, 1] which is aimed to measure
the strength of the spatial localization. We impose

(1.27) FNL(ε, t, x, u) = λενχ
(
3− 2

εt

T

)
χ
( x

rει

)
eiωt/εuj1 ūj2 .

Taking into account the conditions on the support of the am’s and χ, the term FNL
becomes effective only for t ≥ T /ε, that is after the term FL has played its part. So
we observe successively two distinct phenomena: a possible linear amplification, and
then nonlinear interactions.

The solution u to (1.20) exists on a time interval [0, T̃ /ε] with T < T̃ . The argument
is similar to the one given for the toy model. Through the change (1.4), we can
reformulate the equation (1.20) in terms of W = U − Ulin, see (5.3) and (5.4). When
ν+ j1 + j2 > 2, the lifespan expressed in terms of T = εt does not shrink to T when ε
goes to zero. Note however that, due to the quadratic nonlinearity, the global-in-time
existence is not at all guaranteed concerning (1.20).

We still denote by ulin the linear solution obtained from (1.20) when λ = 0. One
point should be underlined here. Our discussion of the linear situation is based on the
analysis in L∞ of oscillatory integrals appearing in a suitable wave packet decompo-
sition of ulin. The precise structure of these wave packets is lost under the influence
of nonlinearities. It follows that our key argument cannot be iterated to obtain the
existence and the asymptotic behavior of the solution to the full nonlinear Equa-
tion (1.20). For this reason, we do not work with (1.20). Instead, we look at the first
two iterates of an associated Picard iterative scheme, which are

∂tu
(0) − i

ε
p(εDx)u

(0) = FL, u|(0)t=0
= 0,(1.28a)

∂tu
(1) − i

ε
p(εDx)u

(1) = FL + FNL
(
u(0)

)
, u|(1)t=0

= 0.(1.28b)

Generalizing (1.4), we can define

(1.29) U (j)(T, z) :=
1

ε
e−iT/ε

2

u(j)
(T
ε
, εz
)
, u(j)(t, x) := εeit/εU (j)

(
εt,

x

ε

)
.

The expression U (0) is the solution to the linear equation (λ = 0). Thus, we have

U (0)(T, z) = Ulin(T, z) :=
1

ε
e−iT/ε

2

ulin

(T
ε
, εz
)
.

Symbols like p appear when looking at special branches V of characteristic varieties
describing the propagation of electromagnetic waves

(1.30) V :=
{
(t, x, τ, ξ); τ = p(ξ), (t, x, ξ) ∈ R3

}
⊂ T ∗(R2) ≡ R2 × R2.

On the other hand, the phase φ may reflect the transport properties of particles. The
graph G of the gradient of φ is associated with the Lagrangian manifold

(1.31) G :=
{(
t, x, ∂tφ(t, x), ∂xφ(t, x)

)
; (t, x) ∈ R2

}
⊂ T ∗(R2) ≡ R2 × R2.

In the ODE framework of Paragraph 1.1, we simply find

Vode =
{
(t, x, 1, ξ); (t, x, ξ) ∈ R3

}
, Gode =

{
(t, x, 1− γ sin t, 0); (t, x) ∈ R2

}
,
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so that

(1.32) Vode ∩ Gode =
{
(kπ, x, 1, 0); (k, x) ∈ Z× R

}
.

Thus, the production at the successive times kπ with k ∈ N of the wave packets uk
which appear at the level of (1.11) can be interpreted as coming from positions which
are inside Vode ∩ Gode. This principle is illustrated in Figure 1 below, given at x fixed
and ξ = 0, with t in abscissa and the time frequency τ in ordinate.

Figure 1. Intersection (in red) of Vode (in blue) and Gode (in green)

Similarly, in the general framework (1.20), two-dimensional oscillating waves uk
can emanate from the more complicated intersection

V ∩ G =
{(
t, x, p(−t),−t

)
; (t, x) ∈ R2 and p(−t) = p(t) = 1− x− γ sin t

}
.

In view of (1.21), for large values of |ξ|, the dispersion relation p(ξ) = τ mimics the
choice p ≡ 1 of (1.3). As in (1.32), the set V ∩ G contains (near x = 0 and for t large
enough) an infinite number of curve portions (in R2) which appear repeatedly in time,
and from which oscillating waves uk may be triggered.

In the framework of SMP and NMR, the symbol p and the phase φ are issued
from different physical laws. They are originally unrelated, see Chapter 2. But they
are connected when solving the equation (1.20). The interactions between “waves”
(associated with p) and “particles” (described by φ) may be revealed through the
intersection between the two geometrical objects V and G, from which waves uk can
be emitted.

The amplification mechanism that may arise after summing the uk’s can be viewed
as a resonance. But now, the waves uk are no more sure to overlap. In contrast to
the toy model, since ∂xφ ̸≡ 0 and p′ ̸≡ 0, the waves uk do propagate in R2. They
propagate in different directions and with various group velocities. They can mix
before reaching the long times t ∼ ε−1.

Fact 3. – In the PDE framework of Equation (1.28), the accumulation of the emitted
oscillating waves uk can produce during long times T ∼ 1 both constructive and
destructive interferences.
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1.3. Statement of main results

The analysis of the creation, the propagation, the linear superposition, and the
nonlinear interaction of the uk’s is a manner to approach some kind of turbulence.
We start with situations where the linear aspects are predominant. A standard Picard
scheme can be used to approximate the nonlinear Equation (1.20). The corresponding
first two iterates yield the Cauchy problems (1.28a) and (1.28b).

Theorem 1.3 (Situations where the linear asymptotic behavior is predominant). –
Select a source term FL as indicated in (1.23) with a phase φ depending on γ ac-
cording to (1.26). Take profiles am satisfying both (1.24) and (1.25). Look at the
Equation (1.20) with a symbol p subject to both (1.21) and (1.22). Introduce the pro-
files U (j), with j ∈ {0, 1}, which are issued from (1.29) after solving (1.28). Fix
some T > 0.

The aim here is to describe the asymptotic behavior of the U (j) when ε goes to
zero. Below, in (1), we first examine what happens in the linear case, when FNL ≡ 0.
Then, in (2), we identify nonlinearities FNL ̸≡ 0 whose introduction has no impact
at leading order.

1. Linear case (FNL ≡ 0). Concerning the profile U (0) ≡ Ulin, we can produce the
following distinct asymptotic behaviors when ε goes to zero.

— Constructive interferences. For all j ∈ Z and T ∈ [T , 2T ],

Ulin(T, 2j) = O(1) = A2
ε

∫ +∞

0

e−i
ℓ
6 (

1
s−

T
s2

)a(s, 0, 0)ds+ o(1),(1.33)

where A2
ε =

√
2

πγ
e−i

γ
ε cos

(γ
ε
− π

4

)
is as in (1.14).

— Destructive interferences. By contrast, for all z ∈ R \ 2Z and for all T ∈
[T , 2T ], we find that

(1.34) |Ulin(T, z)| = o(1).

2. Nonlinear case (FNL ̸≡ 0). Adjust the nonlinearity FNL as in (1.27), with real
parameters ν, j1, j2 ω and ι. Assume that either ν+j1+j2 > 2, or ν+j1+j2 = 2

with ω+j1−j2 ̸= 1. Fix some ι ∈ [0, 1]. In the case ν+j1+j2−2 = ω+j1−j2 = 0,
set ι = 1. Then the nonlinearity plays no role at leading order in the sense that

(1.35) ∀(T, z) ∈ [0, 2T ]× R, U (1)(T, z) = Ulin(T, z) + o(1).

Interpreted in the setting of SMP, Theorem 1.3 shows, as forecast in [8], that
small plasma waves (the uk’s) driven by microscopic instabilities can accumulate over
long times to furnish nontrivial effects. In turn, this phenomenon participate in some
anomalous transport [7] and can trigger instabilities which may act as obstructions to
the confinement of magnetized plasmas [11]. Applied in the context of NMR, our result
investigates the processes whereby human tissues could be heated during magnetic
resonance imaging [21].
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It is worth noting that the turbulent aspects which are revealed by Theorem 1.3
are inherently linked to spatial heterogeneity. They are caused by the impact of the
inhomogeneous source term FL, which involves special oscillating wave front sets.
Both in SMP and NMR, the input of energy is due to a strong external magnetic
field B, whose directions vary with the spatial positions, see Chapter 2.

Theorem 1.3 indicates that Facts 1, 2 and 3 indeed prevail. We still have two notions
of criticality as far as nonlinear effects are concerned: the size of the nonlinearity
(through the choice of ν + j1 + j2) and the nature of oscillations (involving the gauge
parameter g = ω + j1 − j2).

The case ν + j1 + j2 > 2 corresponds to a nonlinearity whose amplitude is too weak
to have effects at leading order, regardless of the gauge. The case ν + j1 + j2 = 2 cor-
responds to a nonlinearity with a critical size, for which we have to further investigate
the content of the oscillations. For g ̸= 1, that is for ω + j1 − j2 ̸= 1, the oscillations
in the nonlinear term are not resonant. They prevent the nonlinearity from having a
leading order contribution. This is why we have (1.35).

In practice, the expression (1.33) is built as a sum of wave packets, which may
be viewed as corresponding to the terms uk of (1.12). But now, the wave packets
accumulate only at special positions which, in the space variable x, are located on a
moving lattice of size ε. The complete statement is Proposition 4.16, which takes into
account the general choices of p and FL introduced in Chapter 2.

By contrast, at all other positions, as indicated in (1.34), the wave packets uk
compensate to furnish asymptotic disappearance. This is due to mixing properties
induced by the variations of the phase (∂xφ ̸≡ 0) and dispersive effects (p′ ̸≡ 0),
mixing properties which are recorded in the arithmetic properties of a phase shift.
This is a feature of the PDE (1.20), which is completely absent from the ODE (1.3).
The full statement can be found in Proposition 4.18.

Compare (1.16) and (1.33). The characteristic function 1[0,T ](s) of (1.16) plays the
role of a(s, 0, 0) inside (1.33). Observe however that the Formula (1.33) differs from
(1.16), due to the factor exp

(
−i ℓ6 ( 1

s −
T
s2 )
)

in front of a. This additional factor is
induced by the rate of convergence of p′′(ξ) towards 1, which appears at the end of
line (1.21). It is absent when p ≡ 1. In comparison to (1.16), due to the presence of
an oscillating factor, it can reduce the amplification phenomenon which is revealed
by (1.33). It reflects some microlocal effect, which is encoded in the behavior of p, on
the asymptotic behavior of the solution Ulin.

Remark that the constructive interferences (1.33) would be very difficult to detect
in Lebesgue norms other than L∞, like L2. This is because the asymptotic profile
of Ulin is nontrivial only on a set of Lebesgue measure zero (the lattice Z). To some
extent, we can say that the underlying mechanisms rely on the recombination of small
scales (rapid oscillations) into larger scales, which produces (asymptotically) a very
weak solution.

As already explained, the linear part (1) of Theorem 1.3 is a direct consequence
of Propositions 4.16 and 4.18. The proof relies basically on classical stationary and
non-stationary phase arguments to precisely describe the infinite number (k ∈ N)
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of emitted signals uk. But the linear superposition of the uk is a quite complicated
mechanism. This requires to sort between dispersive and almost stationary waves,
and this means to carefully examine the phase compensation phenomena that occur
in the summation process. The integral inside (1.33) appears ultimately as the limit
of a Riemann sum indexed by k.

The comparison between the linear solution U (0) ≡ Ulin and the expression U (1) is
a nontrivial test to measure whether or not nonlinear effects can alter the solution
at leading order. Subparagraph (2) of Theorem 1.3 deals with situations where this
effect is negligible, see (1.35).

The content of (1.35) is proved in Chapter 5.2. According to the choice of g or
ι ∈ [0, 1], the size of the o(1) inside (1.35) may be improved, see Propositions 5.18,
5.19 and 5.20. In view of Theorem 1.3, nonlinear phenomena can be expected only
under critical nonlinearities (ν + j1 + j2 = 2) and resonant oscillations (g = 1).

General nonlinear source terms will be investigated in Sections 5.1 and 5.2. But,
because it is simpler and already quite illustrative, in Section 5.3, we only examine
the case of u2. Other quadratic nonlinearities may be more difficult to resolve. Retain
also that, higher-order nonlinearities, like the cubic choice |u|2u, appear to be not
directly manageable through our approach, see Remark 5.26.

Recall that FL has been defined at the level of (1.23). The implementation of u2

corresponds at the level of (1.27) to the selection of λ = 1 and (ν, j1, j2) = (0, 2, 0),
so that ω = −1 (since we want to impose g = 1). Thus, we consider the solution
u(0) = ulin to (1.28a), as well as the solution u(1) to u(1)|t=0

= 0 together with

(1.36) ∂tu
(1) − i

ε
p(−iε∂x)u(1) = FL + χ

(
3− 2

εt

T

)
χ
( x

rει

)
e−it/ε

(
u(0)

)2
.

Theorem 1.4 (Nontrivial nonlinear effects in the presence of resonances). – The
general context is as in Theorem 1.3. We fix ν = 1, j1 = 2, j2 = 0 and ω = −1 to
deal with the quadratic source term u2 of (1.36). It follows that the gauge parameter
g = ω + j1 − j2 = 1 is resonant. Select some ι ∈ ]ι−, 1[ with ι− := (13 −

√
89)/8.

Then, for all time T ∈ [T , 2T ] and for all position z ∈ R, the expressions U (0)(T, ·)
and U (1)(T, ·) which are issued from (1.29) after solving (1.28a) and (1.36) have the
following asymptotic behaviors when ε goes to zero.

— Constructive interferences. When z = 2j for some j ∈ Z, the nonlinear interac-
tions have some effect at leading order. As a matter of fact, we find

(1.37)

W(1)(T, 2j) := U (1)(T, 2j)− U (0)(T, 2j)

= o(1) +A4
ε

∫ T

0

χ
(
3− 2

s

T
)

×
(∫ +∞

0

∫ +∞

0

e
−i ℓ

6
T−s

(σ1+σ2)2 b(σ1, s)b(σ2, s)dσ1dσ2

)
ds,

where A2
ε is as in (1.14) and b(σ, s) := e−i

ℓ
6 (

1
σ−

s
σ2 )a(σ, 0, 0).
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