Astérisque

FRANÇOIS DIGNE JEAN MICHEL On Lusztig's parametrization of characters of finite Groups of Lie type

Astérisque, tome 181-182 (1990), p. 113-156

<http://www.numdam.org/item?id=AST_1990__181-182__113_0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On Lusztig's parametrization of characters of finite groups of Lie type

FRANÇOIS DIGNE ET JEAN MICHEL

This paper has three parts. In the first part, we extend Lusztig's results of [11] about the parametrization of characters of finite reductive groups with a connected center, including [11, theorem 4.23] about multiplicities of irreducible characters in the Deligne-Lusztig characters, to the case of groups with non-connected center. We use mostly a method sketched in chapter 14 of [11] in the case of a cyclic center, based on Clifford theory and a result about the unicity of the parametrisation of characters constructed in [11] which we prove in section 6 (part II). This construction has been carried out by Lusztig in [13] but we need more information than he gets there, in order to get the results of section 5 and of part III.

In sections 1 and 2 we state the results we need from Clifford theory, from [11] and about non-connected groups. We also need a result about the commutation of Lusztig twisted induction with isogenies, whose proof is given in section 9 (part III) using Shintani descent. We then apply these results to the parametrization of characters in section 3, where we need the results of part II. Finally section 4 and section 5 describe the multiplicities of irreducible characters in Deligne-Lusztig characters using Lusztig "families", presented here from a simplified combinatorial viewpoint using the "Mellin transform".

Part II describes under which conditions Lusztig's parametrization of irreducible characters in [11] is unique; section 6 deals with families and Weyl groups, and section 7 gives the main theorem.

Part III studies Shintani descent in groups with non-connected center. We want to show how Shintani descent relates to the parametrization introduced in part I. Section 8 recalls facts about Shintani descent and "F'-twisted induction". In section 9 we prove a result about the commutation of F'-twisted induction with isogenies and deduce the analogous result for Lusztig's twisted induction. In section 10, we first extend to F-class functions the parametrization of section 5 (when the center is not connected we have to make assumptions that we cannot yet prove in all cases). Finally, we give a formula for Shintani descent of principal series characters using the Fourier transform on families (using section 5 of part I). For this last result we have to quote heavily from [7].

This paper * has been prompted by discussions with B. Srinivasan, and Shoji's papers [14] and [15] where he gets a complete description of Shintani descent $\operatorname{Sh}_{F^m/F}$ for m sufficiently divisible and for a group with connected center (Shoji himself uses results of Asai [1] which deal with the case m = 1); this paper also has been prompted by the absence of a convenient written description dealing with groups with non-connected center.

0. Background.

In this section we recall some results from Clifford theory and the theory of F-class functions.

We denote by Irr(G) the set of irreducible characters of the finite group G (over an algebraically closed field of characteristic 0). We now give a general proposition which states basic (well known) results from Clifford theory. Most of these are easy consequences of Mackey formula and Frobenius reciprocity (see also [8, 2.1]).

0.1 PROPOSITION (CLIFFORD THEORY). Let G be a normal subgroup of a finite group \tilde{G} such that the quotient \tilde{G}/G is abelian; let \tilde{Z} be the center of \tilde{G} . For $\rho \in \operatorname{Irr}(\tilde{G})$, we put $A(\rho) = \{\zeta \in \operatorname{Irr}(\tilde{G}/G\tilde{Z}) \mid \rho \otimes \zeta = \rho\}$ (note that \tilde{Z} is in the kernel of any $\zeta \in \operatorname{Irr}(\tilde{G}/G)$ such that $\rho \otimes \zeta = \rho$). If $\mu \in \operatorname{Irr}(G)$ is a component of $\operatorname{Res}_{G}^{\tilde{G}}\rho$, we note $\tilde{G}(\rho)$ for the inertia group of μ in \tilde{G} (it depends only on ρ (not on μ)). Then we have:

- (i) $\operatorname{Ker}(A(\rho)) \subset G(\rho)$.
- (ii) There exists $\tilde{\mu} \in \operatorname{Irr}(\operatorname{Ker}(A(\rho)))$, $\tilde{\rho} \in \operatorname{Irr}(\tilde{G}(\rho))$ and a positive integer e such that:

$$\begin{split} \operatorname{Ind}_{G}^{\operatorname{Ker}(A(\rho))}(\mu) &= \sum_{\alpha \in \operatorname{Irr}(\operatorname{Ker}(A(\rho))/G)} \tilde{\mu} \otimes \alpha, \operatorname{Res}_{G}^{\operatorname{Ker}(A(\rho))}(\tilde{\mu}) = \mu, \\ \operatorname{Ind}_{\operatorname{Ker}(A(\rho))}^{\tilde{G}(\rho)} \tilde{\mu} &= e\tilde{\rho}, \\ \operatorname{Ind}_{\tilde{G}(\rho)}^{\tilde{G}}(\tilde{\rho}) &= \rho, \\ \operatorname{Ind}_{\tilde{G}(\rho)}^{\tilde{G}}(\rho) &= \rho, \\ \end{split}$$

^{*} part of this work was done during the authors visit at Essen university

(iii) The quotient group $\tilde{G}(\rho)/\operatorname{Ker}(A(\rho))$ has cardinality e^2 and we have

$$|A(\rho)| = \langle \operatorname{Res}_{G}^{G}(\rho), \operatorname{Res}_{G}^{G}(\rho) \rangle_{G}.$$

If $\tilde{G}(\rho)/\operatorname{Ker}(A(\rho))$ is cyclic, then e = 1.

The following result, which is proved in [7, 6.1] gives e = 1 in a general setting for Weyl groups:

0.2 LEMMA. Assume that G is a Weyl group and \hat{G} is the semi-direct product of G by a group A of diagram automorphisms of G, then for any character $\rho \in \operatorname{Irr}(\tilde{G})$ we have e = 1.

The proof of this lemma requires the following result (cf. [7, 6.2]) that we will need below in the proof of 5.5

0.3 LEMMA. Let G be a finite group of the form $G_1 \times \ldots \times G_l$ and A be a finite group of automorphisms of G acting by permutation of the G_i . Let $\mu = \mu_1 \otimes \ldots \otimes \mu_l$ be an irreducible character of G. Let A_i be the subgroup of $\operatorname{Stab}_A(\mu)$ normalizing G_i (and so μ_i). If for each i, the character μ_i has an extension to $G_i > A_i$, then μ has an extension to $G > \operatorname{Stab}_A(\mu)$ (i.e., e = 1 for the character μ).

0.4 F-CLASS FUNCTIONS. If G is a finite group and if $\langle F \rangle$ is a group generated by an element F and acting on G, we denote by $\mathcal{C}(G/F)$ the space of complex valued F-class functions on G, i.e. functions φ which verify $\varphi(x, Fy) = \varphi(yx)$ for any x and y in G (note that the group $\langle F \rangle$ can be infinite). We may identify $\mathcal{C}(G/F)$ with the space of restrictions to the set G.F of class functions on the semi-direct product $G \rtimes \langle F \rangle$. This space admits as a basis the set of restrictions to G.F of an arbitrarily chosen extension to $G \Join \langle F \rangle$ of each F-invariant irreducible character of G. If φ_1 and φ_2 are elements of $\mathcal{C}(G/F)$, we put

$$\langle \varphi_1, \varphi_2 \rangle_{G.F} = |G|^{-1} \sum_{x \in G.F} \overline{\varphi_1(x)} \varphi_2(x).$$

We recall that if φ_1 and φ_2 are characters of $G \Join \langle F \rangle$ whose restrictions to G are irreducible, then

$$\langle \varphi_1, \varphi_2 \rangle_{G.F} = \begin{cases} 0, & \text{if } \operatorname{Res}_G^G \rtimes \langle F \rangle \varphi_1 \neq \operatorname{Res}_G^G \bowtie \langle F \rangle \varphi_2 \\ 1, & \text{if } \varphi_1 = \varphi_2 \end{cases}$$

(if φ_1 and φ_2 have equal restrictions to G, then they differ by multiplication by a linear character of $\langle F \rangle$).

If H is a subgroup of G stabilized by F, we denote by $\operatorname{Res}_{H,F}^{G,F}$ the restriction of F-class functions, and we define induction of F-class function by

$$\operatorname{Ind}_{H,F}^{G,F}(f)(gF) = |H|^{-1} \sum_{\{\gamma \in G | \gamma(gF) \in H, F\}} f(\gamma(gF)).$$

Induction and restriction are adjoint with respect to the above scalar product.

Ι

1. Disconnected groups.

In this section we extend the definition of Deligne-Lusztig characters to non connected reductive groups. We begin with a proposition which gives the relation between the Weyl group of a reductive group and that of its connected component.

1.1 PROPOSITION. Let **H** be a reductive algebraic group, and let **T** be a maximal torus of **H**; then we may find representatives of **H**/**H**° in $N_{\mathbf{H}}(\mathbf{T})$. We set $W = N_{\mathbf{H}}(\mathbf{T})/\mathbf{T}$ and $W^{\circ} = N_{\mathbf{H}^{\circ}}(\mathbf{T})/\mathbf{T}$. Let **B** be a Borel subgroup containing **T**. We put $A = \{w \in W \mid w\Phi^+ = \Phi^+\}$ where Φ is the root system of **H**° and + denotes the order on Φ corresponding to **B**. Then we have

(i) $W = W^{\circ} \rtimes A$ and $A \simeq H/H^{\circ}$.

(ii) If **H** is defined over \mathbb{F}_q , with corresponding Frobenius F, and F stabilizes **T** and **B** above, then F stabilizes W, W^o and A.

In the following we consider a (not necessarily connected) reductive algebraic group **H** defined over \mathbf{IF}_q , and denote by F the corresponding Frobenius endomorphism. We fix a pair $\mathbf{T} \subset \mathbf{B}$ of an F-stable maximal torus in **H** included in an F-stable Borel subgroup. Let $\mathbf{H}^{\circ*}$ be a group dual to \mathbf{H}° containing a given torus \mathbf{T}^* dual to **T**. Finally we fix a Frobenius endomorphism F^* dual to F. We may identify W° with $N_{\mathbf{H}^{\circ*}}(\mathbf{T}^*)/\mathbf{T}^*$ by mapping w to the dual isogeny w^* , but note that this map is an anti-isomorphism. For any $v \in W^{\circ}$ we choose a representative $\dot{v}^* \in N_{\mathbf{H}^{\circ*}}(\mathbf{T}^*)$ of v^* and for any representative $\dot{a} \in N_{\mathbf{H}}(\mathbf{T})$ of an element $a \in A$, we choose an isogeny $(\dot{a}F)^*$ dual to $\dot{a}F$. For $w \in W$, if w is in the coset $W^{\circ}a$, we write $(\dot{w}\dot{a}F)^*$ for $(\dot{a}F)^*\dot{w}^*$.