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On Lusztig's parametrization of characters 
of finite groups of Lie type 

FRANQOIS DIGNE ET JEAN MICHEL 

This paper has three parts. In the first part, we extend Lusztig's 
results of [11] about the parametrization of characters of finite reductive 
groups with a connected center, including [11, theorem 4.23] about mul­
tiplicities of irreducible characters in the Deligne-Lusztig characters, to 
the case of groups with non-connected center. We use mostly a method 
sketched in chapter 14 of [11] in the case of a cyclic center, based on 
Clifford theory and a result about the unicity of the parametrisation of 
characters constructed in [11] which we prove in section 6 (part II). This 
construction has been carried out by Lusztig in [13] but we need more 
information than he gets there, in order to get the results of section 5 
and of part III. 

In sections 1 and 2 we state the results we need from Clifford theory, 
from [11] and about non-connected groups. We also need a result about 
the commutation of Lusztig twisted induction with isogenies, whose 
proof is given in section 9 (part III) using Shintani descent. We then 
apply these results to the parametrization of characters in section 3, 
where we need the results of part II. Finally section 4 and section 5 
describe the multiplicities of irreducible characters in Deligne-Lusztig 
characters using Lusztig "families", presented here from a simplified 
combinatorial viewpoint using the "Mellin transform". 

Part II describes under which conditions Lusztig's parametrization 
of irreducible characters in [11] is unique; section 6 deals with families 
and Weyl groups, and section 7 gives the main theorem. 

Part III studies Shintani descent in groups with non-connected cen­
ter. We want to show how Shintani descent relates to the parametriza­
tion introduced in part I. Section 8 recalls facts about Shintani de­
scent and ".F'-twisted induction". In section 9 we prove a result about 
the commutation of F'-twisted induction with isogenies and deduce the 
analogous result for Lusztig's twisted induction. In section 10, we first 
extend to i^-class functions the parametrization of section 5 (when the 
center is not connected we have to make assumptions that we cannot 
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yet prove in all cases). Finally, we give a formula for Shintani descent of 
principal series characters using the Fourier transform on families (using 
section 5 of part I). For this last result we have to quote heavily from 
[7] 

This paper * has been prompted by discussions with B. Srinivasan, 
and Shoji's papers [14] and [15] where he gets a complete description of 
Shintani descent Shpm / p for m sufficiently divisible and for a group with 
connected center (Shoji himself uses results of Asai [1] which deal with 
the case m = 1 ) ; this paper also has been prompted by the absence of a 
convenient written description dealing with groups with non-connected 
center. 

0. Background. 
In this section we recall some results from Clifford theory and the 

theory of i^-class functions. 
We denote by Irr(G) the set of irreducible characters of the finite 

group G (over an algebraically closed field of characteristic 0 ) . We now 
give a general proposition which states basic (well known) results from 
Clifford theory. Most of these are easy consequences of Mackey formula 
and Frobenius reciprocity (see also [8, 2 .1 ] ) . 

0 .1 PROPOSITION (CLIFFORD THEORY). Let G be a normal subgroup 
of a finite group G such that the quotient G/G is abehan; let Z be the 
center ofG.Forpe Irr(G), we put A(p) = {£ G In(G/GZ) \ p<g>C = p} 
(note that Z is in the kernel of any C G Irr (G/G) such that p <g) £ = p). 
If p, G Irr(G) is a component of Res§ p, we note G(p) for the inertia 
group of /i in G (it depends only on p (not on p,)). Then we have: 

(i) Ker(A(p)) C G(p). 
(ii) There exists p G Irr(Ker(A(/p))), p G lrr(G(p)) and a positive inte­

ger e such that: 

I n d K e r ( A ( p ) ) ( A í ) = 

a € l r r ( K e r ( A ( p ) ) / G ) 

a€lrr(Ker(A(p))/G)a€lrr(Ker(A(p))/G) 

a€lrr(Ker(A(p))/G)a€lrr(Ker()/G) 

a€lrr(Ker(A(p))/G) 

a€lrr(Ker(A(p))/G)a€lrr(Ker( 

ReSöiP)(p) = 
r € G / G ( p ) 

Pt 

* part of this work was done during the authors visit at Essen univer­
sity 
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(in) The quotient group G(p)/Ker(A(/o)) Las cardinality e2 and we have 

L4(p)| = (Res G 
G (p),Res g 

g 
{P))G. 

If G(p)/Kev(A(p)) is cychc, then e = 1. 

The following result, which is proved in [7, 6 .1] gives e = 1 in a 
general setting for Weyl groups: 

0 .2 LEMMA. Assume that G is a Weyl group and G is the semi-direct 
product of G by a group A of diagram automorphisms of G, then for 
any character p G Irr((5) we have e = 1. 

The proof of this lemma requires the following result (cf. [7, 6 . 2 ] ) 
that we will need below in the proof of 5.5 

0.3 LEMMA. Let G be a finite group of the form G\ x . . . x Gi and A 
be a finite group of automorphisms of G acting by permutation of the 
Gi. Let p = p\ ® . . . (g) pi be an irreducible character of G. Let A{ be 
the subgroup of Stab A (M) normalizing Gi (and so pi). If for each i, the 
character pi has an extension to Gi X Ai, then p has an extension to 
G X Stabyi(/^) (i.e., e = 1 for the character p). 

0 .4 F-CLASS FUNCTIONS. If G is a finite group and if <F> is a group 
generated by an element F and acting on G , we denote by C(G/F) the 
space of complex valued .F-class functions on G , i.e. functions cp which 
verify (p(x.Fy) = <p(yx) for any x and y in G (note that the group <F> 
can be infinite). We may identify C(G/F) with the space of restrictions 
to the set G.F of class functions on the semi-direct product G X<F>. 
This space admits as a basis the set of restrictions to G.F of an ar­
bitrarily chosen extension to G X I <JP> of each F-invariant irreducible 
character of G. If y?i and cp2 are elements of C(G/F), we put 

(<PI*V>*)G.F = \G\ 1 

xÇG.F 

^>i{x)ip2{x). 

We recall that if cpi and (p2 axe characters of G x < F > whose restric­
tions to G are irreducible, then 

( < £ l > ^ 2 )G.F = 0, if Res 
G 
G 

X<F> <Pi ^ Res ,G 
*G 

X < F > 
<P2 

1, if (p!=<p2 

(if ipi and <p2 have equal restrictions to G , then they differ by multipli­
cation by a linear character of <F>). 
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If H is a subgroup of G stabilized by F, we denote by Res# ^ 
the restriction of F-class functions, and we define induction of F-class 
function bv 

Ind G.F 

ti.b 
[f)(gF) = l i f l " 1 

a€lrr(Ker(A(p))/G)H,F 

a€lrr(Ker(A(p)) 

Induction and restriction are adjoint with respect to the above scalar 
product. 

I 

1. Disconnected groups. 
In this section we extend the definition of Deligne-Lusztig charac­

ters to non connected reductive groups. We begin with a proposition 
which gives the relation between the Weyl group of a reductive group 
and that of its connected component. 

1.1 PROPOSITION. Let H be a reductive algebraic group, and let T be 
a maximal torus of H; then we may find representatives of H/H° in 
7 V H ( T ) . We set W = i V H ( T ) / T and W° = 7 V H o ( T ) / T . Let B be a 
Borel subgroup containing T. We put A = {w £ W | ™<I>+ = <&+} where 
& is the root system of H° and + denotes the order on & corresponding 
to B . Then we have 

(i) W = W° X A and A ~ H/H°. 
(ii) If H is defined over JFq, with corresponding Frobenius F, and F 

stabilizes T and B above, then F stabilizes W, W° and A. 

In the following we consider a (not necessarily connected) reductive 
algebraic group H defined over IF9, and denote by F the corresponding 
Frobenius endomorphism. We fix a pair T C B of an instable maximal 
torus in H included in an JP-stable Borel subgroup. Let H°* be a group 
dual to H° containing a given torus T* dual to T. Finally we fix a 
Frobenius endomorphism F* dual to F. We may identify W° with 
7 V H O * ( T * ) / T * by mapping w to the dual isogeny w*, but note that this 
map is an anti-isomorphism. For any v £ W° we choose a representative 
v* E iVH°*(T*) of v* and for any representative a £ iVn(T) of an 
element a £ A, we choose an isogeny (aF)* dual to aF. For w £ Wif 
w is in the coset W°a, we write (waF)* for (aF)*w*. 
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