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M o r i t a Equiva lent B l o c k s 
in C l i f f o r d Theory of Finite Groups 

B U R K H A R D K U L S H A M M E R 

Let F be an algebraically closed field o f prime characteristic p, and let 

1 • K • H » G > 1 

be an extension of finite groups. Let B be a block of FK (considered as a subalgebra 

Df FK), and let A be a block o f FH covering B (i. e. 1A1B-$ 0 ) . Following a suggestion 

by J. L. Alperin 113 we consider the following 

Q U E S T I O N . When are A and B Morita equivalent? 

Our main results concerning this question are given by theorems 1, 7, 8 and 

proposition 10 below. Special cases o f this question are dealt with in T21 and [ 7 ] . 

T H E O R E M I. With notation as above, the map B > 1AB C A, b \ > ^A^' *S AN 

isomorphism of F-algebras. 

Before proving theorem 1 we introduce some notation and state some preliminary 

results. Obviously K is contained in H(B) := [h*H: hBh'1 = B), the stabilizer o f B in H, 

and we set G(B) = H(B)/K. The fol lowing facts are wel l -known (see [8; theorem I ] , 

for example). 

P R O P O S I T I O N 2. (i) FH1JFH is the sum of all blocks of FH covering B. 

(ii) If hv ht denote a transversal for H(B) in H then the map 

ÌAatitJJFH(B)) FHiBFH.lavlttuJmr FHiBFH.lavlttuJm 

S.M.F. 
Astérisque 181-182 (1990) 

209 



B. KÙLSHAMMER 

is an isomorphism of F-algebras. 

(iii) The maps 

ZUgFHlB)) Z(FH1BFH). z Et htzh~\ 

and 

ZiFHlgFH) ZUBFHCB)), Z Ibz 

are isomorphisms of F-algebras and inverse to each other. 

For hzH(B), the map B > B, b \ hbh~1, is an /^algebra automorphism of B. It 

is easy to see that the elements he.H for which the map B >• J5, b i > hbh~\ is an 

inner automorphism of B form a normal subgroup HIB1 o f H(B) containing K (cf. F3; 

proposition 2.71). Define GtBJ := HtBJ/K. 

Setting C := 1BCFH(K) and C. r = CfthFK for g = hK c G we obtain C =O geG Cg Cg 

and CgCg- C Cgg f ° r g>g' e e G l- e - C is a G-graded F-algebra in the sense of [41. I t 

is easy to see that Cg = 0 for g e. G \ G(B). Thus C = ® R f G ( B ) Cg can also be viewed 

as a Gf#J-graded F-algebra. 

P R O P O S I T I O N 3. ( i 3 ; lemma a.3j) / := © ^ € G f B , (JZBJC^ © © № C F B A 

ideal of C contained in the radical JC of C. 

Setting CtBJ := © ^ c C r B J we thus have C = C7i*V + / C . By lifting theorems for 

idempotents one obtains the fol lowing result. 

C O R O L L A R Y 4. U3; theorem 3.51) AJJ idempotents of ZC are contained in CtBJ. 

It is easy to see that CIBJ is a crossed product of GIB J with Z£, in the sense of 

141; in particular, CIB1 is free as a Zfl-module, and CtBJ := CIBJ/(JZB)CtBJ is a 

crossed product of GtBJ with ZB/CJZB) = F, i. e. a twisted group algebra of GtBJ over 

F. Our next result is C8; theorem CI . 
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P R O P O S I T I O N S. / / G = GLBJ then the map B ® z b C — > IJJPH, b <g> c \—> be, is 

an isomorphism of F-algebras. 

W e are now in a position to prove theorem 1. 

Proof of theorem 1. Obviously the map B > l^B, b \ > lAb, is an epimorphism 

o f F-algebras. Hence it suffices to prove injectivity. By proposition 2, 1A1B *s ^ne 

block idempotent o f a block o f FH(B) covering B. Hence we may replace H by H(B) 

and assume H = H(B). By corollary 4, 1A is contained in FHFBJ. Replacing A by a block 

of l^FHCBJ we may assume that H = HfBJ. In this case the map B 0 ZB C > lBFHf 

b ® c \ > be, is an isomorphism of F-algebras by proposition 5. Moreover, C is free 

over ZB. This isomorphism maps B <8> ZB 1AC onto A. Since C = lAC ® (tB - lA)Cf i^C 

is projective over ZB. Since ZB is local, 1AC is even free over ZB. Thus A is free over 

B, and the result fo l lows . 3 

In order to prove our next theorem we need a result on the behaviour of defect 

groups. 

P R O P O S I T I O N 6. (L3; theorem 7.7}) 1A + (JZB)CLBJ is a primitive idempotent in 

Ccfsj^CB)), and A has a defect group P such that Pd K is a defect group of B and 

PK/K is a defect group of 1A + (JZB)C[B1 in G(B). 

Part o f proposition 6 has also been proved in 16; 4.21. W e will say that A and B 

are "naturally" Morita equivalent of degree n if there exists a simple F-subalgebra 

S of A of dimension n2 such that the map 1AB(E> F S • A, b (g> s I > bs, is an 

isomorphism of F-algebras. In this case A and B are Morita equivalent since 1AB is 

isomorphic to B by theorem 1 and S is a complete matrix algebra of degree n over F. 

T H E O R E M 7. A and B are "naturally" Morita equivalent if and only if G = GIB J and 

A and B have the same defect. 

Proof. Suppose first that G = GIBJ and that A and B have the same defect. By 

proposition 6, the block 1AC + (JZB)C/(JZB)C of the twisted group algebra C/(JZB)C 

of GCB1 = G over F has defect 0 in G(B) = G. It is well-known that this implies that 
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the block 1AC + (JZB)C/(JZB)C o f C/(JZB)C is a simple F-algebra; in particular, 1AJC = 

(JZB)1AC. By the Wedderburn^Malcev theorem there is a simple F-subalgebra 5 of 

1AC such that 1AC = 5 0 1AJC = 5 0 (JZB)1AC. Then 1AC = (ZB)S + (JZB)1AC, and 

Nakayama's lemma implies that 1AC = (ZB)S. In the proof o f theorem 1 we had shown 

that 1AC is free over ZB. Thus 1AC/1AJC is free o f the same rank over ZB/JZB = F. 

Therefore the rank of 1AC over ZB equals the dimension of 5 over F. Comparing 

dimensions we see that the map Z B ® F 5 > f ^ C , z ® s I >• zs\ is an isomorphism 

o f F-algebras. By proposition 5, the map B ® F 5 > ,4. 6 ® s I > bs, is an 

isomorphism as wel l . 

Suppose now conversely that A and B are "naturally" Morita equivalent, and let 5 

be a simple F-subalgebra o f A such that the map 1AB<S>F 5 > A, b ® s I > fcs, is 

an isomorphism of F-algebras. Then 1A = ls = 1A1B- On the other hand, it fo l lows 

from proposition 2 that 1A = St^t ^ AS^I^B^I^^ w*tn pairwise orthogonal idempotents 

ljK(htlBht'1) where t = JH:H(B)L Thus H(B) = H and G(B) = G. 

W e know from proposition 3 that C = CfBJ+JC, in particular, 1AC = lACfBJ + 1AJC. 

On the other hand, since A and B are "naturally" Morita equivalent the map 

1AZB<2> F 5 1AZB S = CA(B) = 1AC, z <g> s zs, 

is an isomorphism of F-algebras. By the Wedderburn-Malcev theorem we may find 

a unit u in 1AC such that 5U is contained in 1ACLBJ. Then the map 1AB ®F Su > A, 

b <S> s \ > bs7 is an isomorphism of F-algebras as wel l . Hence we may assume that 5 

is contained in FHCBJ. Since also 1A e FHCB1 by corollary 4 we obtain A c FHCBJ which 

clearly implies that HCBJ = H. 

Since 1AC is isomorphic to Z B ® F 5. 1AC + (JZB)C/(JZB)C is a simple f-algebra. It 

is wel l -known that this implies that the block 1AC+ (JZB)C/(JZB)C o f CCBJ has defect 

0 in GCBJ = G. By proposition 6, A and B have the same defect. C3 

In the fol lowing we assume that G(B) = G; in view of proposition 2, this is not an 

important restriction. In this case we can reduce the question of whether A and B are 

"naturally" Morita equivalent to their Brauer correspondents. Let Q be a defect group 

of B, and let B' be the Brauer correspondent of B in NK(Q). Since G(B) = G the 

Frattini argument shows that H = NM(Q)K, and we obtain a finite group extension 
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