Astérisque

BURKHARD KÜLSHAMMER Morita equivalent blocks in Clifford theory of finite groups

Astérisque, tome 181-182 (1990), p. 209-215

<http://www.numdam.org/item?id=AST_1990__181-182__209_0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Morita Equivalent Blocks in Clifford Theory of Finite Groups

BURKHARD KÜLSHAMMER

Let F be an algebraically closed field of prime characteristic p, and let

 $1 \longrightarrow K \longrightarrow H \longrightarrow G \longrightarrow 1$

be an extension of finite groups. Let B be a block of FK (considered as a subalgebra of FK), and let A be a block of FH covering B (i. e. $t_A t_B \neq 0$). Following a suggestion by J. L. Alperin [1] we consider the following

QUESTION. When are A and B Morita equivalent?

Our main results concerning this question are given by theorems 1, 7, 8 and proposition 10 below. Special cases of this question are dealt with in [2] and [7].

THEOREM 1. With notation as above, the map $B \longrightarrow 1_A B \subset A$, $b \longmapsto 1_A b$, is an isomorphism of F-algebras.

Before proving theorem 1 we introduce some notation and state some preliminary results. Obviously K is contained in $H(B) := \{h \in H: hBh^{-1} = B\}$, the stabilizer of B in H, and we set G(B) := H(B)/K. The following facts are well-known (see [8; theorem 1], for example).

PROPOSITION 2. (i) $FH1_BFH$ is the sum of all blocks of FH covering B. (ii) If h_p , ..., h_t denote a transversal for H(B) in H then the map

$$\operatorname{Mat}(t, I_{B}FH(B)) \longrightarrow FHI_{B}FH, \ [a_{ij}]_{i,j=1}^{t} \longrightarrow \sum_{i,j=1}^{t} h_{i}a_{ij}h_{j}^{-1},$$

S.M.F. Astérisque 181-182 (1990)

B. KÜLSHAMMER

is an isomorphism of F-algebras.

(iii) The maps

$$Z(1_BFH(B)) \longrightarrow Z(FH1_BFH), z \longmapsto \sum_{i=1}^{t} h_i z h_i^{-1}$$

and

$$Z(FH1_{B}FH) \longrightarrow Z(1_{B}FH(B)), z \longmapsto 1_{B}z,$$

are isomorphisms of F-algebras and inverse to each other.

For $h \in H(B)$, the map $B \longrightarrow B$, $b \longmapsto hbh^{-1}$, is an *F*-algebra automorphism of *B*. It is easy to see that the elements $h \in H$ for which the map $B \longrightarrow B$, $b \longmapsto hbh^{-1}$, is an inner automorphism of *B* form a normal subgroup H(B) of H(B) containing K (cf. [3; proposition 2.7]). Define G(B) := H(B)/K.

Setting $C := 1_B C_{FH}(K)$ and $C_g := C \cap hFK$ for $g = hK \in G$ we obtain $C = \bigoplus_{g \in G} C_g$ and $C_g C_{g'} \in C_{gg'}$ for $g,g' \in G$, i. e. C is a G-graded F-algebra in the sense of [4]. It is easy to see that $C_g = 0$ for $g \in G \setminus G(B)$. Thus $C = \bigoplus_{g \in G(B)} C_g$ can also be viewed as a G(B)-graded F-algebra.

PROPOSITION 3. (13; lemma 3.31) $I := \bigoplus_{g \in G[B]} (JZB)C_g \oplus \bigoplus_{g \in G(B) \setminus G[B]} C_g$ is an ideal of C contained in the radical JC of C.

Setting $C[B] := \bigoplus_{g \in G[B]} C_g$ we thus have C = C[B] + JC. By lifting theorems for idempotents one obtains the following result.

COROLLARY 4. ([3; theorem 3.5]) All idempotents of ZC are contained in C[B].

It is easy to see that C[B] is a crossed product of G[B] with ZB, in the sense of [4]; in particular, C[B] is free as a ZB-module, and $\overline{C[B]} := C[B]/(JZB)C[B]$ is a crossed product of G[B] with $ZB/(JZB) \cong F$, i. e. a twisted group algebra of G[B] over F. Our next result is [8; theorem C].

MORITA EQUIVALENT BLOCKS

PROPOSITION 5. If G = G[B] then the map $B \otimes_{ZB} C \longrightarrow 1_B FH$, $b \otimes c \longmapsto bc$, is an isomorphism of F-algebras.

We are now in a position to prove theorem 1.

Proof of theorem 1. Obviously the map $B \longrightarrow 1_A B$, $b \longmapsto 1_A b$, is an epimorphism of *F*-algebras. Hence it suffices to prove injectivity. By proposition 2, $1_A 1_B$ is the block idempotent of a block of *FH(B)* covering *B*. Hence we may replace *H* by *H(B)* and assume H = H(B). By corollary 4, 1_A is contained in *FH(B)*. Replacing *A* by a block of $1_A FH(B)$ we may assume that H = H(B). In this case the map $B \otimes_{ZB} C \longrightarrow 1_B FH$, $b \otimes c \longmapsto bc$, is an isomorphism of *F*-algebras by proposition 5. Moreover, *C* is free over *ZB*. This isomorphism maps $B \otimes_{ZB} 1_A C$ onto *A*. Since $C = 1_A C \oplus (1_B - 1_A)C$, $1_A C$ is projective over *ZB*. Since *ZB* is local, $1_A C$ is even free over *ZB*. Thus *A* is free over *B*, and the result follows. \boxtimes

In order to prove our next theorem we need a result on the behaviour of defect groups.

PROPOSITION 6. (13; theorem 7.7.1) $1_A + (JZB)C[B]$ is a primitive idempotent in $C_{\overline{C(B)}}(G(B))$, and A has a defect group P such that $P \cap K$ is a defect group of B and PK/K is a defect group of $1_A + (JZB)C[B]$ in G(B).

Part of proposition 6 has also been proved in [6; 4.2]. We will say that A and B are "naturally" Morita equivalent of degree n if there exists a simple F-subalgebra S of A of dimension n^2 such that the map $l_A B \otimes_F S \longrightarrow A$, $b \otimes s \longmapsto bs$, is an isomorphism of F-algebras. In this case A and B are Morita equivalent since $l_A B$ is isomorphic to B by theorem 1 and S is a complete matrix algebra of degree n over F.

THEOREM 7. A and B are "naturally" Morita equivalent if and only if G = G[B] and A and B have the same defect.

Proof. Suppose first that G = G[B] and that A and B have the same defect. By proposition 6, the block $I_AC + (JZB)C/(JZB)C$ of the twisted group algebra C/(JZB)C of G[B] = G over F has defect 0 in G(B) = G. It is well-known that this implies that

B. KÜLSHAMMER

the block $I_AC + (JZB)C/(JZB)C$ of C/(JZB)C is a simple *F*-algebra; in particular, $I_AJC = (JZB)I_AC$. By the Wedderburn-Malcev theorem there is a simple *F*-subalgebra *S* of I_AC such that $I_AC = S \oplus I_AJC = S \oplus (JZB)I_AC$. Then $I_AC = (ZB)S + (JZB)I_AC$, and Nakayama's lemma implies that $I_AC = (ZB)S$. In the proof of theorem 1 we had shown that I_AC is free over *ZB*. Thus I_AC/I_AJC is free of the same rank over *ZB/JZB* \cong *F*. Therefore the rank of I_AC over *ZB* equals the dimension of *S* over *F*. Comparing dimensions we see that the map $ZB \otimes_F S \longrightarrow I_AC$, $z \otimes s \longmapsto zs$, is an isomorphism of *F*-algebras. By proposition 5, the map $B \otimes_F S \longrightarrow A$, $b \otimes s \longmapsto bs$, is an isomorphism as well.

Suppose now conversely that A and B are "naturally" Morita equivalent, and let S be a simple F-subalgebra of A such that the map $1_A B \otimes_F S \longrightarrow A$, $b \otimes s \longmapsto bs$, is an isomorphism of F-algebras. Then $1_A = 1_S = 1_A 1_B$. On the other hand, it follows from proposition 2 that $1_A = \sum_{i=1}^{t} 1_A (h_i 1_B h_i^{-1})$ with pairwise orthogonal idempotents $1_A (h_i 1_B h_i^{-1})$ where t = |H:H(B)|. Thus H(B) = H and G(B) = G.

We know from proposition 3 that C = C[B] + JC; in particular, $I_A C = I_A C[B] + I_A JC$. On the other hand, since A and B are "naturally" Morita equivalent the map

$$1_A ZB \otimes_F S \longrightarrow 1_A ZB \cdot S = C_A(B) = 1_A C, \ z \otimes s \longmapsto zs,$$

is an isomorphism of *F*-algebras. By the Wedderburn-Malcev theorem we may find a unit *u* in 1_AC such that S^u is contained in $1_AC[B]$. Then the map $1_AB \otimes_F S^u \longrightarrow A$, $b \otimes s \longmapsto bs$, is an isomorphism of *F*-algebras as well. Hence we may assume that *S* is contained in *FH[B]*. Since also $1_A \in FH[B]$ by corollary 4 we obtain $A \subset FH[B]$ which clearly implies that H[B] = H.

Since I_AC is isomorphic to $ZB \otimes_F S$. $I_AC + (JZB)C/(JZB)C$ is a simple F-algebra. It is well-known that this implies that the block $I_AC + (JZB)C/(JZB)C$ of $\overline{C(B)}$ has defect 0 in G[B] = G. By proposition 6, A and B have the same defect. \square

In the following we assume that G(B) = G; in view of proposition 2, this is not an important restriction. In this case we can reduce the question of whether A and B are "naturally" Morita equivalent to their Brauer correspondents. Let Q be a defect group of B, and let B' be the Brauer correspondent of B in $N_K(Q)$. Since G(B) = G the Frattini argument shows that $H = N_H(Q)K$, and we obtain a finite group extension