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A Canonical Brauer Induction Formula 

Robert BOLTJE 

Introduct ion 

Throughout this paper G denotes a finite group, R{G) the character ring of G and (—, —) the 

usual inner product of R(G). 

In 1946 Richard Brauer proved (cf. [Brl]) that each virtual character \ of G can be expressed 

as a linear combination 

X = E 
t 

zi nd ghicpi 

where zi € Z, Hi < G and tpi G Hi = Hom(if,, C*). Brauer was motivated by the question 

whether Artin L-functions of any virtual character have a meromorphic extension to the entire 

complex plane. This was known for one-dimensional characters, and it was also known that the 

Artin L-functions are invariant under induction. So Brauer's induction theorem gave a positive 

answer to the above question, and this is a very typical example for the applications of the 

theorem in number theory. However, Brauer's theorem is a mere existence theorem, and it 

remained the question for an explicit formula, associating to each virtual character x an integral 

linear combination as above. A first result in this direction is again due to Brauer, who gave in 

1951, cf. [Br2], an explicit formula to Artin's induction theorem, i.e. a formula which induces 

from cyclic subgroups and has rational coefficients. It was not before 1986, that there appeared 

V. Snaith's explicit version of Brauer's induction theorem, cf. [Sn]. His formula is based on 

topological invariants, in particular on Euler characteristics of quotient spaces of the unitary 

group U(n). 

Here we give an explicit and canonical formula for Brauer's induction theorem by algebraic and 

combinatorial methods. 'Canonical' means that this formula is unique among all the expressions 

for x 35 above, if a certain functorial behaviour with respect to G is required. To state this 

functorial property it is convenient to introduce the free abelian group R+(G) whose basis is 

S.M.F. 
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given by the G-conjugacy classes of pairs( h,cp), where H < G and <p G H, cf. [De], p. 11. 
We consider a formula as a map from R(G) to R+(G), such that it becomes the identity, if 
the symbols (H,<p) are replaced by md^(p € R(G). It turns out that R+(G) carries a lot of 
structures, which we investigate in section 1. Using the results about R+(G) we define the 
formula aG : R(G)—• R+(G) and prove its natural properties, cf. theorem (2.1) and cor. 
(2.12). In section 3 we apply the methods developed in the previous sections to obtain an 
induction formula which induces only from subgroups of a fixed type T, cf. theorem (3.2). In 
this case however, we don't have integral coefficients any longer. For the type of cyclic groups 
we obtain again Brauer's explicit version [Br2] of Artin's induction theorem. The cases in which 
the formula is integral are determined in (3.12) and (3.13). Unfortunately the formula is not 
integral for the type of elementary groups. For the type of cyclic groups we obtain that the 
"worst" denominator in the formula for the characters of G coincides with the Artin exponent 

of G. 
The formula aG we introduce in section 2 is different from Snaith's formula in [Sn], but there is 
a relation between them which can be found in [Bo], chap. IV. 
I am grateful to G.-M. Cram for his proof of proposition (2.24). 

1. T h e ring R+(G) 

For a finite group G we consider the set MG of all pairs (H,<p) where H < G and <p G H = 
Hom(#, C*). G acts from the left on M.a by componentwise conjugation: \H,<p) := (9H, Sp) 
where gH = gHg"1, V := <p(9~l-9)t f°r 9 £ G. We denote the G-orbit of (H,ip) by (H,<p)G and 
the set of 6?-orbits by A4G/G. Let R+(G) be the free abelian group with the basis AiG/G, then 
we have the well-defined map into the character ring R(G) 

(i.i) ba :R+(G)—>R(G), (H cp) indgh cp 

bG is surjective by Brauer's induction theorem [Brl]. We want to construct a map 

(1.2) aG : H(G) —> R+(G), X» 
(Hcp) 

E 
G£MG/G 

a (Hcp) a (x)(Hcp) a 

with bGaG = id#(G), i.e. 

(1.3) X = E 
(H,cp) GeMG/G 

g (tf,v>) 
<?(x)ind£v? 
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for all x € R(G). Moreover we want aG to have a good functorial behaviour with respect to the 

structures carried by R(G) and R+(G). 

(1 .4) Remark. We may consider R+(G) as the Grothendieck group of the category of mono

mial representations of G. Its objects are finite dimensional CG-modules V ( C G denotes the 

group ring) with a fixed decomposition V = V\ ©... © Vn into one-dimensional subspaces, called 

the lines of V, such that G permutes the lines. V is called simple, if its lines are permuted 

transitively by G. A morphism F : V = V\ © ... © Vn —• W = W\ © ... © Wm of two mono

mial representations of G is a CG-linear map such that for each i G { 1 , . . . ,n} there is some 

j G { 1 , . . . , m } with -F(Vi) C W^. For monomial representations we may define in an obvious way 

direct sums, tensor products, duals, restriction maps along group homomorphisms and induction 

maps along subgroup relations. Every monomial representation of G is a unique direct sum of 

simple ones and the isomorphism classes of simple monomial representations are in a bijective 

correspondence to MG/G by the following construction: For simple V = V\ © ... © Vn define H 

to be the stabilizer of V\ and if G H to be the action of H on V\. The choice of another line 

Vi gives a conjugated pair g(H,<p). bG is induced from the forgetful functor which associates to 

every monomial representation of G the underlying CG-module. For more details of the above 

statements see [Bo] chap.I §1. 

The constructions described above provide R+(G) with the following structures: 

Multiplication. The tensor product on monomial representations is translated into a commu

tative ring structure on R+(G) given by 

(1 .5 ) (hcp)g(kY)g = E 
aeH\G/K 

(hcp)g(kY)gvp 

The unity is ((7,1) . R+(G) contains the group ring ZG = ©v€£ Z((7,CP) as a subring. Note 

that the G-orbit of (G, tp) consist only of this single pair. So R+(G) is a ZG-algebra and bG is a 

ZG-algebra map. We have the ZG-module decomposition 

R+(G) = ZG 
(H,v>) £MG/G,H<G 

Z(H^) , 

with the corresponding projection map 

(1.6) RG/R+)—ZG(hcp)g(kY)g(h?CP°, 
iiH = G\ 

0, if H < G. 
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Also R{G) is a ZC?-algebra, since it contains ZG as a subring. This gives rise to the ZG-module 

decomposition 

R(G) = ZG 
XelTTG\G 

Zx 

where IrrG is the set of irreducible characters of G. We obtain the corresponding projection 

(1 .7 ) Pa : R(G) > ZG, ITTG3 Y *-> (hcp)g(kY)g 
0, otherwise. 

Note that irG is multiplicative, which is in general not true for pG. 

Restriction. The restriction of monomial representations of G along a group homomorphism 

/ : G' —> G gives rise to the ring homomorphism 

(1 .8 ) res+, :R+(G)^R+(G'): )^R+(G') E 
»€ / (G' ) \G /W 

(/-i(*ff), W ) ° -

The diagram 

(1 .9 ) 

R+(G) 
ba 

R(G) 

res+/ res/ 

)^R+) df R(G>) 

commutes, since the corresponding diagram on the level of the categories of (monomial) repre

sentations commutes. For the same reason we have 

(1 .10 ) res+/// = res+/»res+/ 

for another group homomorphism / : G" —• G1. If / is given as the inclusion of a subgroup 

H < G, we write res+£ instead of res+/ and obtain from (1.8) 

( î . i i ) r e s ° : R+(G) R+(H), )^R+(G') E 
sGH\G/K 

xxx)^R+(G') 

If / :G—>G/N =:G is the canonical surjection for a normal subgroup N of G, we obtain 

( 1 . 1 2 ) res+,(ff/JV,Y>)° c 
)^R+(G') 

where N < H < G and <p € H vanishes on N. Thus res+/ maps the basis MQ/G injectively into 

the basis MG/G. We use the restriction maps to define the ring homomorphism 

(1 .13) Po : R+(G) 
H<G 

ZH)^R+(G')X R+(G'))^R+(G') 
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